期刊文献+

高温退火制备再生光纤光栅的光谱重复性 被引量:3

Spectral Repeatability of Regenerated Fiber Gratings Prepared by High Temperature Annealing
下载PDF
导出
摘要 利用紫外光照射制作两组光纤布拉格光栅,使用高温炉对第一组光栅进行850℃退火处理,在擦除初始光栅后制备出高温再生光栅,该组再生光栅的布拉格波长的变化范围为0.22nm;平均透射率为2.57dB,折射率变化范围为0.52dB。对第二组光栅在850℃退火处理后进行1 100℃后退火,该组的布拉格波长变化范围为0.41nm;平均透射率为0.69dB,折射率变化范围为0.16dB。后退火处理会放大再生光栅的波长差异,其原因是退火过程中各光栅固定拉力之间的微小差别。光纤布拉格光栅从擦除到再生是一个可控的过程,具有很好的重复性,通过高温退火法制备再生光栅的大规模生产是可行的。 Two groups of fiber Bragg gratings were fabricated by using UV laser, and group one was annealed at 850 ℃in the high temperature furnace. Grating regeneration occurred after the initial grating vanished. For the regenerated gratings from group one, the variation in Bragg wavelength is 0. 22 nm and the average transmissions strength is 2.57 dB, while the variation of transmission among ten gratings is 0. 52 dB. Group two underwent post-annealing at 1 100 ℃after the process of grating re- generation at 850 ℃. For the regenerated gratings from group two, the variation in Bragg wavelength is 0. 41 nm and the average transmissions strength is 0. 69 dB, while the variation of transmission among ten gratings is 0. 16 dB. The variation in Bragg wavelength of grating with post-annealing is notably larger than that of the regenerated gratings in group one, which is caused by the small difference in fixed tension among the ten gratings. The process of grating regeneration has good reproducibility. The mass production of the regenerated gratings by high temperature annealing is feasible.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第5期1411-1414,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(10374001) 铁道部重点课题项目(2009J006-K 2010J008-G)资助
关键词 光纤布拉格光栅 再生光栅 高温退火 高温传感 重复性 光纤传感 Fiber Bragg grating Regenerated grating High temperature annealing High temperature sensor Repetitiveness Fiber sensor
  • 相关文献

参考文献17

  • 1姜德生,何伟.光纤光栅传感器的应用概况[J].光电子.激光,2002,13(4):420-430. 被引量:364
  • 2周智,欧进萍.土木工程智能健康监测与诊断系统[J].传感器技术,2001,20(11):1-4. 被引量:54
  • 3Othonos A. Review of Scientific Instruments, 1997, 68: 4309.
  • 4Hjelme D R, Bjerkan L, Neegard S, et aL Applied Optics, 1997, 36: 328.
  • 5Inaudi D, Glisic B. Optical Fiber Sensors, OSA, 2006, paper FB3.
  • 6Mihailov S J. Sensors, 2012, 12(2): 1898.
  • 7Baker S R, Rourke H N, Baker V, et al. Journal of Lightwave Technology, 1997, 15: 1470.
  • 8Kannan S, Guo J Z Y, Lemaire P J. Journal of Lightwave Technology, 1997, 15: 1478.
  • 9Dong L, Cruz J L, Tucknott J A, et al. Optics Letters, 1995, 20:1982.
  • 10Nguyen L V, Hwang D, Moon S, et al. Optics. Express, 2008, 16(15): 11369.

二级参考文献87

  • 1张启伟.桥梁结构模型修正与损伤识别[M].上海:同济大学桥梁工程系,1999..
  • 2肖仪清.现役固定式海洋平台结构体系可靠度分析与安全评定[M].哈尔滨:哈尔滨工业大学,2001.65-85.
  • 3[8]Slowik V,et al.Fibre Bragg Grating Sensors in Concrete Technology[J].LACER,1998,3:109-119.
  • 4[9]Internet reference:bssm.org/ConferencePage008.ht-ml.
  • 5[10]Vohra S T,et al.Quasi-Static Strain Monitoring During the ‘Push' Phase of a Box-Girder Bridge Using Fiber Bragg Grating Sensors[A].European Workshop on Optical Fibre Sensors[C].Scotland,UK,1998.
  • 6[11]Nellen P M,et al.Application of fiber optical and resistance strain gauges for long-term surveillance of civil engineering structures[A].Proc.SPIE[C].1997,3043:77-86.
  • 7[12]Kersey A D,et al.Progress towards the development of practical fibre Bragg grating instrumentation systems[A].Proc.SPIE[C].1996,2839:40-63.
  • 8[13]Dewynter-Marty V,et al.Concrete strain measurements and crack detection with surface-mounted and embedded Bragg grating extensometer[A].Proc of the OPtical Fiber Sensors Conf.(OFS-12)[C].Williamsburg,VA,USA,1997,600-603.
  • 9[14]Denarie E,et al.Concrete fracture process zone characterization with fiber optics[J].J.of Engineering Mechanics,2001,5,494-502.
  • 10[15]Federal Highway Administration.1996 Research and Technology Program Highlights.Publication No.FHWA-RD-96-168,Washington D.C.,1996,41.

共引文献416

同被引文献15

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部