期刊文献+

基于改进Apriori算法的决策推导过程 被引量:2

Mining decision rules based on the improved Apriori algorithm
下载PDF
导出
摘要 计算机的广泛应用,使得人类积累了海量的数据。利用数据挖掘技术,可以从大型数据库或数据仓库中提取出隐含的,未知的及有潜在应用价值的信息或模式。关联规则是数据挖掘中最活跃的分支之一,侧重于挖掘数据库中各数据项间隐藏的深层次的关联关系,分析出潜在的行为模式。Apriori算法是挖掘关联规则的最经典的算法。文中介绍了经典Apriori算法的基本方法,并从数据项建立,频繁项集连接,规则生成3个方面对Apriori进行改动,挖掘出了可用于决策的规则。 The wide range application of the computer accumulated vast amounts of data. Data mining can extracted the implied, unknown, and the potential value of information or patterns from large database or data warehouse. Association rules is one of the most active branch of da- ta mining, focusing on mining the deep-level relationship among data items in the database, and analyzing the potential behavior patterns. Apriori algorithm is the most classical algorithm for mining association rules. This paper introduced the basic method of Apriori algorithm, and changed it in three aspects: data item establishment, frequent item sets connection and the rule generation. Using the changed algorithm, mined rules can be used for decision-making.
出处 《河北农业大学学报》 CAS CSCD 北大核心 2013年第2期122-124,共3页 Journal of Hebei Agricultural University
基金 保定市科学技术研究与发展计划项目(12ZG009)
关键词 数据挖掘 关联规则 APRIORI算法 决策规则 data mining association rule apriori algorithm decision rule
  • 相关文献

参考文献8

二级参考文献31

  • 1徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 2毕建欣,张岐山.关联规则挖掘算法综述[J].中国工程科学,2005,7(4):88-94. 被引量:51
  • 3王颖,张丽霞,刘晓东,王伟峰.关联规则挖掘技术在Web预取中的应用[J].微电子学与计算机,2005,22(4):166-169. 被引量:4
  • 4陈健.关于关联规则经典算法的一种改进[J].福建电脑,2006,22(8):86-87. 被引量:1
  • 5Houts ma M, Swami A. Set-oriented Mining of Association Rules [R]. Research Report RJ 9567. San Jose: IBM Almaden Research Center, 1993.
  • 6Agrawal R, I mielinski T, Swami A. Mining Association Rules between Sets of Items in Large Database [A]. Proceedings of ACM SIGOD Conference on Management of Data[C]. Washinton DC, 1993:207-216.
  • 7Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Database [A]. Proceeding of the 20th International Conference on Very Large Databases [C].Santiago, Chile, 1994.
  • 8Xie Jun, Xie Kanglin. An Improved Algorithm for Mining Association Rules.
  • 9H J,KM.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.
  • 10Quinlan J R.Induction of decision trees[J].MachineLearning,1986,1(1):81-106.

共引文献98

同被引文献15

  • 1欧健文,董守斌,蔡斌.模板化网页主题信息的提取方法[J].清华大学学报(自然科学版),2005,45(S1):1743-1747. 被引量:70
  • 2张志刚,陈静,李晓明.一种HTML网页净化方法[J].情报学报,2004,23(4):387-393. 被引量:57
  • 3贺志,黄厚宽,田盛丰.一种优化相关规则的发现方法[J].计算机学报,2006,29(6):906-913. 被引量:12
  • 4徐嘉莉,石琳,付平.改进的Apriori算法在基于J2EE架构的网络考试系统中的应用[J].成都大学学报(自然科学版),2007,26(3):254-257. 被引量:3
  • 5STUDER R, BENJAMINS V R, FENSEL D. Knowledge engineering: principles and methods[ J]. Data & Knowledge Engineering, 1998,25 (1) : 161 - 197.
  • 6RANI B, AGGARWAL S. Optimization of association rule mining techniques using ant colony optimization [ J ]. International Journal of Current En- gineering and Technology, 2013,3 (5) : 1804 - 1808.
  • 7LIN S H, HO J M. Discovering informative content blocks from Web documents[ C ]. Proceedings of the 8th ACM SIGKDD International Confer- ence on Knowledge Discovery and Data Mining. New York: ACM, 2002:588 -593.
  • 8WANG J, LOCHOVSKY F H. Data-rich section extraction from HTML pages [ C ]. Proceedings of the 3 rd International Conference on Web Informa- tion Systems Engineering (Workshops). Singapore : IEEE Computer Society,2002:313 - 322.
  • 9RAJKUMAR K, KALAIVANI V. Dynamic web page segmentation based on detecting reappearance and layout of tag patterns for small screen devices [ C]. 2nd International Conference on Recent Trends in Information Technology. Chennai: Tamil Nadu ,2012:508 -513.
  • 10刘兴涛,石冰,解英文.挖掘关联规则中Apriori算法的一种改进[J].山东大学学报(理学版),2008,43(11):67-71. 被引量:13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部