期刊文献+

K-框架的冗余和扰动 被引量:2

Excess and perturbation of K-frames
原文传递
导出
摘要 主要讨论Hilbert空间K-框架的冗余性和扰动稳定性,给出Hilbert空间K-框架的基础上去掉一些元素后剩余的元素还构成K-框架的两个充分条件和一个不构成K-框架的充分条件,同时给出Hilbert空间K-框架的一个比较一般的3系数扰动结论. We mainly discuss the excess and perturbation of K - frames in Hilbert spaces. And give two sufficient conditions for the remainder of a K - frame after deleting some elements to be a K - frame and a sufficient condition for the remainder to be not a K - frame. We also give a more general pertur- bation result with three coefficients for a K- frame.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期143-147,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2012J01005) 天元基金资助项目(11226099) 福建省教育厅科研资助项目(JA11100) 福州大学科技发展基金资助项目(2012-XQ-29 2012-XY-21) 福州大学科研启动基金资助项目(022410)
关键词 K-框架 冗余 扰动 K - frame excess perturbation
  • 相关文献

参考文献14

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series[J]. Trans Math Soc, 1952, 72:341 -366.
  • 2Daubechies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions[ J]. J Math Phys, 1986, 27:1 271 - 1 283.
  • 3Casazza P. The art of frame theory[J]. Taiwan Residents J of Math, 2000, 4(2) : 129 -201.
  • 4Christensen O. An introduction to frames and Riesz bases [ M ]. Boston: Birkh6user, 2003.
  • 5Ferreira P J S G. Mathematics for multimedia signal processing II: discrete finite frames and signal reconstruction [ C ]//Byrnes J S. Signal Processing for Multimedia. Aveiro: IOS Press, 1999:35 -54.
  • 6Eldar Y C. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors [ J ]. J Fourier Anal Appl, 2003, 9 ( 1 ) : 77 - 96.
  • 7Eldar Y C, Werther T. General framework for consistent sampling in Hilbert spaces [ J ]. Int J Wavelets Multi Inf Pro, 2005, 3 (3) : 347 -359.
  • 8Dudey Ward N E, Partington J R. A construction of rational wavelets and frames in Hardy - sobolev space with applications to system modelling[ J]. SIAM J Control Optim, 1998, 36 : 654 - 679.
  • 9Benedetto J J, Powell A M, Yilmaz O. Second order sigma -delta quantization of finite frame expansions [ J ]. Appl Comp Harm Anal. 2006, 20:126 - 148.
  • 10Chan R H, Riemenschneider S D, Shen L, et al. Tight frame: an efficient way for high -resolution image reconstruction [ J ]. Appl Comput Harmon Anal, 2004, 17:91 - 115.

同被引文献17

  • 1DUFFIN R J ,SCHAEFFER A C. A class of nonharmonic Fourier series [ J]. Trans Amer Math Soc, 1952,72 : 341 - 366.
  • 2DAUBECHIES . Ten Lectures on Wavelets[ M ]. Philadelphia: SIAM, 1992.
  • 3CHRISTENSEN O. An Introduction to Frames andRiesz Bases [ M ]. Boston:Birkhauser,2002.
  • 4FEICHTINGER H G, STROHMER T. Gabor Analysis and Algorithms : Theory and Application [ M ]. Boston : Birkhauser, 1998.
  • 5FEICHTINGER H G, STROHMER T. Advances in Gabor Analysis [ J ]. Boston: Birkhauser ,2003.
  • 6GASAZZA P G. Modern tools for Weyl - Heisenberg ( Gabor ) frame theory [ J J. Adv Imag Elect Phys, 2001,115 ( 1 ) : 1 - 127.
  • 7GAVRUTA L. Frames for operators [ J]. Appl Comp Harm Anal,2012,32:139 - 144.
  • 8GAVRUTA L. Perturbation of K - frames [ J ]. Bul St Univ Politehnica Timisoara,2011,56 ( 70 ) : 48 - 53.
  • 9GAVRUTA L. New results on frames for operators [ J]. Proc. Intern. Conf. Sciences, 11 - 12 Nov. 2011, Oradea, Accpted.
  • 10李登峰,杨利军.Hilbert空间上框架扰动的新结果[J].数学物理学报(A辑),2008,28(3):489-499. 被引量:8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部