期刊文献+

不平衡数据集的决策树算法

Decision Tree Algorithm for Imbalanced Data Sets
下载PDF
导出
摘要 在不平衡数据集中,多数类不一定是最优的,这一问题将会影响决策树的生成效果和分类预测的准确性,提出类置信度比例决策树算法,这种算法对类的大小不敏感.通过实验验证,这种算法比传统的决策树算法更具有优越性. The majority class in the imbalanced data sets is not necessarily the best, which will influence not only the generating effect of decision tree but also the accuracy of the final classification prediction. Therefore, Class Confidence Proportion Decision Tree is proposed. This new algorithm is insensitive to the size of the classes. It is proved that this algorithm is better than the traditional one through extensive experiments.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2013年第2期154-157,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省科技攻关项目(102102210175) 河南省青年骨干教师资助项目(2010GGJS-068)
关键词 不平衡数据集 类置信度比例 决策树 算法 imbalanced data sets Class Confidence Proportion decision Tree algorithm
  • 相关文献

参考文献7

  • 1Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16 : 321-357.
  • 2ZHENG Z H, WU X Y, SRIHARI R. Feature selection for text categorization on imbalanced data[J]. S IGKDD Explorations,2004,6 (1) :80-89.
  • 3FAWCETT T, PROVOST F. Combining data mining and machine learning for effective user profile[C]. Proc of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, 1996.
  • 4Welss G. Mining with rarity : a unifying framework[J]. SIGKDD Explorations, 2004,6 (1) : 7-19.
  • 5Xu X, He Y. Improvements on Fast Motion Estimation Strategy for H. 264/AVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(3) :285-293.
  • 6李瑞,魏现梅,黄明,梁旭.一种改进的决策树学习算法[J].科学技术与工程,2009,9(20):6038-6041. 被引量:10
  • 7Cieslak D A, Chawta N V. Learning Decision Trees for Unbalanced Data[C]. In Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases, Berlin, 2008.

二级参考文献6

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部