期刊文献+

一种基于移相误差估计的5步移相算法 被引量:2

Error-compensating five-sample phase-shifting algorithm based on phase-shift error estimation
原文传递
导出
摘要 移相误差是用移相法进行相位测量的主要误差。本文提出一种 5步移相算法 ,分两步进行相位计算 ,首先估计实际步进移相的线性移相误差 ,然后再利用此移相误差估计值计算相位分布。移相误差估计公式和相位计算公式简洁 ,算法简单易行 ,对线性移相误差和二次谐波的敏感度低 ,可基本消除线性移相误差对解调相位的影响。对本文提出的算法进行了仿真研究 ,同时给出了 Hariharan 5步算法、Surrel 6步最小算法的仿真结果。结果表明 :本算法明显优于以上两种算法 ,可基本消除线性移相误差引起的相位偏移。本算法适用于作等步移相的相位测量或移相的标定。 A new error compensating five sample phase shifting algorithm which is insensitive to phase shift error is proposed to retrieve the phase distribution of a fringe pattern It includes two steps First, the linear phase shift error is estimated using four sample images Then, phase distribution is calculated with error corrected using the phase shift error estimated in the first step As the equations of error estimation and phase calculation are simple, this new algorithm is practical as well as effective Computer simulations were carried out to verify the effectiveness of the algorithm Results of two other well known error compensating algorithms are also presented, which show the new algorithm is the least sensitive to phase shift error It is concluded that the proposed algorithm can accurately estimate the linear phase shift error and eliminate the resulting phase deviation, even in the presence of second harmonic distortion
出处 《光学技术》 CAS CSCD 2000年第6期565-567,共3页 Optical Technique
关键词 移相算法 光学测量 相位测量 移相误差 误差估计 phase shifting algorithm optical measurement
  • 相关文献

参考文献1

  • 1Hong Zhang,Opt Eng,1999年,38卷,9期,1524页

同被引文献21

  • 1朱日宏,陈进榜,王青,陈磊.移相干涉术的一种新算法:重叠四步平均法[J].光学学报,1994,14(12):1288-1293. 被引量:36
  • 2Leslie L Deck, James A Soobitsky. Phase-shifting via wavelength in very large aperture interferometers [J]. Proceedings of SPIE, 1999, 3782: 432-442.
  • 3Chai Liqun, Xun Qiao, Deng Yan, et al. 500-mm-aperture wavelength-tuning phase-shifting interferometer [J]. Proc of SPIE, 2006, 6150:61500E-1-61500E-6.
  • 4C Joenathan. On Phase Measuring Interferometry Algorithms [J]. Proceedings of SPIE, 2622: 514-521.
  • 5Wyant J C. Interferometric optical metrology: basic systems and principles[J]. Laser Focus, 1982 : 65-71.
  • 6Hariharan P, Oreb B, Eiju T. Digital phase-shifting interferometr: a simple error compensating phase calculations algorithrn[J]. ApplOpt , 1987,(26): 2504--2505.
  • 7Qian Kemao. Comparison of some phase shifting algorithms with a phase of [J]. Proceedings of SPIE, 2001, 4596:310-313.
  • 8Chunlong Wei, Mingyi Chen, Cao Yuan, et al. Compound Phase-stepping Algorithm by Lissajous Figures Technique and Iterative Least-squares Fitting[J]. Proceedings of SPIE, 1999, 3782, 415--425.
  • 9Radim Halir, Jan Flusser. Numerically stable direct least squares fitting of ellipses[A]. The Sixth International Conference in Central Europe on Computer Graphics and Visualization [C]. 1998. 125--132.
  • 10Huang K T, Chen H C. Automatic measurement and stress a~ nalysis of ITO/PET flexible substrate by shadow moir6 inter1 ferometer with phase - shifting interferometry [ J ]. Journal Display Technology ,2014,10 (7) :609 - 614. l.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部