期刊文献+

基于高阶累积量的核Logistic回归调制分类算法 被引量:1

A method of modulation classification of Kernel Logistic Regression based on high-order cumulants
下载PDF
导出
摘要 针对现有数字信号调制识别的问题,提出了一种基于核Logistic回归(KLR)的自动分类方法。该方法提取了信号的高阶累积量参数用作训练与测试数据,采取常用的决策树分类构架的思想,仿真并比较已有的基于支撑向量机(SVM)的调制分类方法,结果表明,在低信噪比为0 dB时,分类性能一般高于SVM;5 dB时,采用KLR的分类识别率均达到90%以上,有较为优越的分类性能。 Aiming to the problem of automatic modulation classification of the existing digital signal, a classification method based on Kernel Logistic Regression(KLR) is developed.This method is primarily used in economic, medical science and speech process etc, while seldom applied in the field of communication signals. The characteristic parameter of high-order cumulants of the signal is used for training data and testing data.The classification is performed adopting the frequently-used decision tree method. The proposed method is compared to the modulation classification method based on Support Vector Machine(SVM) through simulation experiments. The results indicate that the proposed method is qualified to do the work.Under low SNR(O dB), the performance of classification is higher than that based on SVM; while under 5dB, the correct recognition rate is above 90% based on KLR.
作者 徐闻 王斌
出处 《太赫兹科学与电子信息学报》 2013年第2期260-265,共6页 Journal of Terahertz Science and Electronic Information Technology
关键词 调制识别 分类 高阶累积量 核Logistic回归 决策树 modulation recognition classification high-order cumulants Kernel Logistic Regression decision tree
  • 相关文献

参考文献10

二级参考文献79

共引文献122

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部