期刊文献+

基于相关反馈的微博相似主题时序查询 被引量:2

Relevance Feedback-based Search of Topic Time Series Similarity in Micro-blogging
下载PDF
导出
摘要 提出了一种基于相关反馈的微博相似主题时序查询方法。该方法通过考虑用户对不同查询结果是否满意的反馈情况,建立修改度量系数的目标函数,从而实现微博中体现用户兴趣的主题时序相似性计算,为用户提供更满意的相似主题时序查询结果。基于该方法设计了一个可视化的微博相似主题时序查询系统,在微博代表性网站-Twitter数据集上进行的实验,表明了该方法在微博背景下的相似主题时序查询中的有效性。 A new approach based on relevance feedback was proposed for the topic time series similarity search in micro-blogging.By considering whether the user is satisfied with the returned time series,we established an objective function for learning the coefficient of the unique metric,which reflects the user's accurate interest.Therefore,the approach can provide the user with more satisfying topic time series in micro-blogging.We also developed a topic time series similarity search system in micro-blogging based on the new approach.Experiment results on Twitter data show the effectiveness of our proposed approach.
出处 《计算机科学》 CSCD 北大核心 2013年第4期169-171,198,共4页 Computer Science
基金 国家自然科学基金(61172106) 北京市自然科学基金(4112062)资助
关键词 微博客 主题时序 相似查询 相关反馈 Micro-blogging Topic time series Similarity search Relevance feedback
  • 相关文献

参考文献9

  • 1He Y, Su W, Tian Y, et al. Summarizing microblogs on network hot topics[C]//iTAP: the 2011 International Conference on In- ternet Technology and Applications. 2011 : 1-4.
  • 2Yang J, Leskovec J. Patterns of temporal variation in online media[C] // WSDM' 11 : Proceedings of the Fourth ACM Inter- national Con{erence on Web Search and Data Mining. 2011:177- 186.
  • 3Song S, Li Q, Bao H. Detecting dynamic association among twit- ter topics[C]//WWW 2012 : Proceedings of the 2012. ACM Con- ference on the World Wide Web. 2012:605-606.
  • 4Keogh E J, Pazzani M J. Relevance feedback retrieval of time se- ries data[C]//SIGIR 1999: the 22nd Annual ACM Conference on Special Interest Group on Information Retrieval. 1999: 183- 190.
  • 5郑斌祥,席裕庚,杜秀华.利用反馈的时序模式挖掘算法研究[J].控制与决策,2002,17(5):527-531. 被引量:2
  • 6秦吉胜,王淑静,宋瀚涛.基于小波变换和反馈的时间序列相似模式搜索算法[J].北京理工大学学报,2004,24(12):1070-1073. 被引量:2
  • 7Pawling A, Madey G. Feature Clustering for Data Steering in Dynamic Data Driven Application Systems[C]//ICA2S 2009, Part Ⅱ, Lecture Notes in Computer Science. Volume 5545,2009 : 460- 469.
  • 8Meij E, Weerkamp W, Rijke M D. Adding Semantics to Micro- bloc Posts[C]//WSDM' 12 : Proceedings of the fourth ACM in- ternational conference on Web search and data mining. 2012: 563-572.
  • 9Griery C, Thomas K, Paxsony V, et al. @spare: The Under- ground on 140 Characters or Less[C]//CCS' 10 : Proceedings of the 17th ACM Conference on Computer and Communications Security. 2010 : 27-37.

二级参考文献16

  • 1[1]R Agrawal,M Mehta,J Shafer,et al.The QUEST data mining system[A]. Proc of Int Conf on Data Mining and Knowledge Discovery(KDD′96)[C].Oregon,1996.244-249.
  • 2[2]D J Berndt, J Cliffod. Finding patterns in time series: A dynamic programming approach[A]. Advances in Knowledge Discovery and Data Mining[C]. Menlo Park:AAAI Press,1996.229-248.
  • 3[3]C Faloutsos, M Ranganathan, Y Manolopoulos. Fast subsequence matching in time-series databases[A]. Proc of ACM SIGMOD Conf on Management of Data (SIGMOD′94)[C]. Minneapolis: ACM Press,1994.419-429.
  • 4[4]R Agrawal, Lin K I, Sawhony Shim K, et al.Fast simi-larity search in the presence of noise, scaling and translation in time series databases[A].Proc of 21st Int Conf on Very Large Data Bases[C]. Zurich,1995.490-501.
  • 5[5]N Roussopoulos, S Kelley, F Vincent. Nearest neighbour queries[A]. Proc of ACM SIGMOD[C]. San Jose,1995.71-79.
  • 6[6]R Agrawal, C Faloutsos, A Swarni. Efficient similarity search in sequence database[A]. 4th Int Conf on Foun-dations of Data Organization and Algorithms[C].Evanston,1993.69-84.
  • 7[7]D Rafiei, A Mendelzon. Similarity-based queries for time series data[A]. Proc of ACM SIGMOD Conf on Management of Data(SIGMOD′97)[C].Arizona: ACM Press,1997.13-25.
  • 8Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[A]. Proceedings of the 4th International Conference of Foundations of Data Organization and Algorithms (FODO)[C].London:Springer-Verlag, 1993.69-84.
  • 9Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subsequence matching in time-series databases[A]. Proc of the ACM SIGMOD[C]. New York: ACM Press, 1994.419-429.
  • 10Rafiei D, Mendelzon A. Similarity-based queries for time series data[A]. Proc of the ACM SIGMOD Conf[C]. New York: ACM Press, 1997.13-25.

共引文献2

同被引文献10

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部