期刊文献+

大规模图上标签集约束路径的集合查询 被引量:2

All Pairs Label-constraint Path Query in Large Graph
下载PDF
导出
摘要 图数据模型被广泛用于社交网络、生物技术、语义网络等开放、异构环境下的数据建模。标签集约束路径查询是基本路径查询问题之一,因其具有路径描述的灵活性而受到目前研究的重视。目前重点研究布尔查询问题:判断给定顶点对间是否有满足标签集约束的路径,返回是或否。现研究布尔查询问题的正交问题,称为集合查询问题:给定标签约束集,返回满足标签集约束可达的顶点对。集合查询问题面临两个困难:1)简单地将集合查询问题简化为布尔查询问题的迭代会陷入穷举困境;2)压缩传递闭包的生成树结构虽然能够有效地回答布尔查询问题,但是,这种压缩结构不能有效支持集合查询,因为集合查询需要搜索满足约束连通的所有顶点对。为此,继续采用生成树来压缩标签路径传递闭包,用倒排索引表来加快集合查询所导致的搜索,并进一步给出两个优化算法。在大规模的数据集上的测试表明,本方法在时间和空间效率方面都具有优势。 Graph data has been used to model open and heterogeneous data such as social network, biological network and semantic Web. The edge-labeled graphs are drawing the attention of researchers for its scalability to describe the path teachability. Its fundamental problem is about returning true or false of the label-constraint path query. Based on this, we put forward all pairs label-constraint path query problem. There are two kinds of difficulty to solve this prob- lem: 1) It needs to enumerate all pairs of vertices exhaustively if taking the label-constraint path query to solve it; 2) The spanning tree method can't support the all pairs path query problem even though it can answer the path query effi- ciently. In this work, we compressed the label path transitive closure through spanning tree and quickened the query time by inverted index technique. We also gave two optimal algorithms for the query when searching answers on the spanning tree. The extensive experiments value the effectiveness and efficiency of our approach both on computing time and storage space.
作者 包佳佳 田伟
出处 《计算机科学》 CSCD 北大核心 2013年第4期172-176,192,共6页 Computer Science
基金 国家自然科学基金(60973023 61003057)资助
关键词 标签集约束路径查询 标签集约束路径的集合查询 倒排索引 Graph Label-constraint path query All pairs label-constraint path query Inverted index
  • 相关文献

参考文献15

  • 1Jin Ruo-ming, Hong Hui, Wang Hai-xun, et al. Computing La- bel-Constraint Reachability in Graph Database [C]//SIGMOD' 10. 2010:123-134.
  • 2Zou Lei,Xu Kun, Yu J X. Answering Label-constraint Reach- ability in Large Graphs[R]. TR-DB-ICST-PKU-2011-002.
  • 3Insti- tute of Computer Science and Techniloge Fang Wei. TEDI: Efficient Shortest Path Query Answering on Graphs [C]//SIGMOD ' 10. 2010:99-110.
  • 4Jin Ruo-ming, Xiang Yang, Ruan Ning, et al. 3-HOP.. A High- Compression Indexing Scheme for Reaehability Query [C]// SIGMOD '09. 2009:813-826.
  • 5Wang Hai-xun, He Hao, Yang Jun, et al. Dual labeling: Answer- ing graph teachability queries in constant time [C]//lCDE '06.2006:75.
  • 6Yan Y, Wang C, Zhou A, et al. Efficiently querying RDF data in triple stores [R]//Tech report. 2008.
  • 7Gou Gang, Chirkova R. Efficiently querying large xml data re- positories:A survey [J]. IEEE Trans. Knowl. Data Eng. , 2007, 19(10) : 1381-1403.
  • 8Jagadish H V. A compression technique to materialize transitive closure[J]. ACM Trans. Database Syst. , 1990,15(4) : 558-598.
  • 9Cohen E, Halperin E, Kaplan H, et al. Reachability and distance queries via 2-hop labels [C]//Proc of the 13th annual ACM- SIAM Symp on Discrete Algorithms. 2002:937-946.
  • 10Chomsky, Noarn. Three Models for the Description of Language [J]. IRE Transactions on Information Theory, 1956,2 (3) : 1 13- 124.

同被引文献22

  • 1刘勇,李建中,朱敬华.一种新的基于频繁闭显露模式的图分类方法[J].计算机研究与发展,2007,44(7):1169-1176. 被引量:10
  • 2Khan A,Yan X,Wu K L.Towards proximity pattern mining in large graphs[C]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,2010:867-878.
  • 3Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[J].ACM SIGMOD Record,2000,29(2):1-12.
  • 4Agrawal R,Imieliński T,Swami A.Mining association rules between sets of items in large databases[J].ACM SIGMOD Record,1993,22(2):207-216.
  • 5Kuramochi M,Karypis G.Frequent subgraph discovery[C]//Proceedings IEEE International Conference on Data Mining,2001:313-320.
  • 6Zhao P,Yu J X,Yu P S.Graph indexing:tree+delta<=graph[C]//Proceedings of the 33rd International Conference on Very Large Data Bases,2007:938-949.
  • 7Agrawal R,Srikant R.Fast algorithms for mining association rules[C]//Proc 20th Int Conf Very Large Data Bases,1994:487-499.
  • 8Han Jiawei,Kamber M.数据挖掘概念与技术[M].北京:机械工业出版社,2007:146-159,351-384.
  • 9Wang K,Tang L,Han J,et al.Top down fp-growth for association rule mining[M].Berlin Heidelberg:Springer,2002.
  • 10Huan J,Wang W,Prins J,et al.Spin:mining maximal frequent subgraphs from graph databases[C]//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2004:581-586.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部