期刊文献+

基于非负特征值分解的极化SAR子空间分解滤波

Subspace Decomposition Filtering Based on NNED for Polarimetric SAR
下载PDF
导出
摘要 极化SAR子空间分解滤波的优势在于能很好地保持极化信息,然而斑点噪声抑制效果与边缘、点目标信息的保持能力却有待提高。针对这一问题,提出了一种基于非负特征值分解(NNED)的极化SAR子空间分解滤波。对于每一个像素点,首先计算其参数向量协方差矩阵的特征值与特征向量,进而得到各个特征子空间;然后,以散射机制相似度最小化为标准,利用NNED选取分离信号子空间与噪声子空间的最优阈值;最后根据信号子空间得到滤波后的结果。实测极化SAR实验表明,相比于同类算法,所提出的算法能有效地抑制斑点噪声并且能很好地保持边缘、点目标信息。 Although subspace decomposition filtering for polarimetric SAR can keep the polarimetric information very well, it is necessary to enhance its despeckling performance and capability of keeping edge-point information. For the problem, a subspace decomposition filtering based on nonnegative eigenvalue decomposition(NNED) was proposed. For each pixel,firstly we calculated eigenvalues and eigenvectors of the parameter vector covariance matrix, and then each eigen-subspace was obtained, secondly we used the NNED to select the optimal threshold for separating signal subspace from noise subspace, and the selecting criterion is the minimal similarity measurement of scattering mechanisms, thirdly the filtered result was produced by the signal subspace. The real-POLSAR-data experiment shows that compared with other congener algorithms, the proposed algorithm can efficiently suppress speckle noise and keep the edge-point infor- mation very well.
出处 《计算机科学》 CSCD 北大核心 2013年第5期266-270,共5页 Computer Science
基金 国家自然科学基金(61271297 61272281) 国防预研基金(9140A01060411DZ0101) 博士学科点科研专项基金(20110203110001)资助
关键词 极化合成孔径雷达(极化SAR) 斑点噪声 子空间分解 非负特征值分解(NNED) Polarimetric synthetic aperture radar(POLSAR) Speckle noise Subspace decomposition Nonnegative ei- genvalue decomposition(NNED)
  • 相关文献

参考文献19

  • 1Van Zyl J J, Kim Y. Synthetic Aperture Radar Polarimetry [M]. Califomia: Jet Propulsion Laboratory, 2011 : 85-155.
  • 2Lee J S,Pottier E. Polarimetrie Radar Imaging from Basic to Ap- plication [M]. New York: CRC Press, 2011.
  • 3周晓光,匡纲要,万建伟.多极化SAR图像斑点抑制综述[J].中国图象图形学报,2008,13(3):377-385. 被引量:22
  • 4Cloude S R. Polarisation Applications in Remote Sensing[M]. New York: Oxford University Press, 2010.
  • 5杨杰,郎丰铠,李德仁.一种利用Cloude-Pottier分解和极化白化滤波的全极化SAR图像分类算法[J].武汉大学学报(信息科学版),2011,36(1):104-107. 被引量:16
  • 6Lee J S, Grunes M R, Schuler D L, et al. Scattering-model-based speckle filtering of polarimetric SAR data [J]. IEEE Transaction on Geoscience and Remote Sensing,2006,44(1): 176-187.
  • 7郭睿,刘艳阳,臧博,邢孟道.一种保持散射特性的极化SAR图像滤波方法[J].西安电子科技大学学报,2011,38(1):90-95. 被引量:2
  • 8邓少平,李平湘,张继贤,黄国满.基于乘积模型的极化SAR滤波[J].武汉大学学报(信息科学版),2011,36(10):1168-1171. 被引量:5
  • 9Lopez-Martinez C, Fabregas X. Model-based polarimetric SAR speckle filter[J]. IEEE Transaction on Geoscience and Remote Sensing, 2008,46 (11 ) : 3894-3907.
  • 10Chen Jiong,Chen Yi-lun,An Wen-tao. Nonlocal filtering for po- larimetric SAR data: a pretest approach [J]. IEEE Transaction on C-eoscience and Remote Sensing, 2011,49(5) : 1744-1754.

二级参考文献128

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部