期刊文献+

非线性Neumann问题正解的存在性 被引量:4

Existence of Positive Solutions of Nonlinear Neumann Problems
原文传递
导出
摘要 研究非线性Neumann问题(p(t)u'+q(t)u=f(t,u),t∈(0,1),u'(0)=u'(1)=0正解的存在性,其中p,q∈C[0,1]满足p(t)〉0,0〈q(t)〈b*,t∈[0,1],b*为线性问题(p(t)')'+bu=0,u'(0)=0,u(1)=0的第一特征值.运用拓扑度理论及Rabinowitz全局分歧定理为上述问题建立了正解的存在性结果. We are concerned with the existence of positive solutions of the nonlinear Neumann problem (p(t)u'+q(t)u=f(t,u),t∈(0,1),u'(0)=u'(1)=0 where p,q∈C[0,1] with p(t)〉0,0〈q(t)〈b*,t∈[0,1],b* is the first eigenvalue of the Robin problem (p(t)')'+bu=0,u'(0)=0,u(1)=0 By applying the topological degree theory and global bifurcation techniques, we establish the existence results of positive solutions for above problem.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第3期289-300,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11061030) 国家自然科学天元基金资助项目(11226132) 高校基本科研业务费专项资金资助项目(212084)
关键词 存在性 特征值 NEUMANN问题 分歧方法 正解 existence eigenvalues Neumann problem bifurcation methods positive solutions
  • 相关文献

参考文献18

  • 1Jiang D., Liu H., Existence of positive solutions to second order Neumann boundary value problems, J. Math. Res. Exposition, 2000, 20: 360-364.
  • 2Sun J., Li W., Multiple positive solutions to second-order Neumann boundary value problems, Appl. Math. Comput., 2003, 146: 187-194.
  • 3Sun J., Li W., Cheng S., Three positive solutions for second-order Neumann boundary value problems, Appl. Math. Lett., 2004, 17: 1079-1084.
  • 4Miciano R., Shivaji R., Multiple positive solutions for a class of semipositone Neumann two-point boundary value problems, J. Math. Anal. Appl., 1993, 178: 102-115.
  • 5Rabinowitz P. H., Some aspects of nonlinear eigenvalue problems, Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N. M., 1971), Rocky Mountain J. Math., 1973, 3: 161-202.
  • 6Walter W., Ordinary Differential Equations, Springer-Verlag, New York, 1998.
  • 7Hai D., Oppenheimer S. F., Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl., 1996, 198: 35-48.
  • 8Rachunkov~ I., Stan~k S., Topological degree method in functional boundary value problems at resonance, Nonlinear Anal., 1996, 27: 271-285.
  • 9Cabada A., Habets P., Lios S., Monotone method for the Neumann problem with lower and upper solutions in the reverse order, Appl. Math. Comput., 2001, 117: 1-14.
  • 10Cabada A., Sanchez L., A positive operator approach to the Neumann problem for a second order ordinary differential equation, J. Math. Anal. Appl., 1996, 204: 774-785.

同被引文献13

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部