期刊文献+

一种粒子群优化的异构多处理器任务调度算法 被引量:5

A PSO Heterogeneous Multiprocessor Task Scheduling Algorithm
下载PDF
导出
摘要 为提高异构多处理器任务调度的执行效率,充分发挥多处理器并行性能,提出一种基于粒子群优化的异构多处理器任务调度算法-PSOASA算法.PSOASA算法以求得任务最短完成时间为目标,首先采用整数矩阵对粒子进行编码,并定义交换操作更新粒子状态,实现粒子搜索空间到离散空间的映射,使连续的粒子群优化算法适用于离散的异构多处理器任务调度问题,同时引入模拟退火算法,克服粒子群算法的"早熟"收敛现象,避免求得的解陷入局部最优.实验结果表明,PSOASA算法的执行效率优于目前广泛采用的遗传算法,有效地降低任务执行时间,减少了迭代次数,适用于异构多处理器环境大规模任务调度. A task scheduling method named PSOASA which based on particle swarm optimization algorithm was proposed to improve the execution efficiency of heterogeneous multiprocessor task scheduling and make full use of the performance of the processor parallel. PSOASA algorithm takes the shortest completion time as the goal. Firstly, the algorithm realizes the mapping from searching space to discrete space which makes the Particle swarm optimization algorithm applied to the discrete heterogeneous multiprocessor task scheduling problem. At the same time, the simulated annealing algorithm is introduced to overcome the particle swarm algorithm "premature" convergence phenomenon and avoid the solution trapping into the local optimum. The experimental results show that the execution efficiency of the PSOASA was superior to the Genetic Algorithm, and reduces much of the execution time of tasks. It is applicable to large-scale task scheduling in heterogeneous multiprocessor environment.
作者 李静梅 张博
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第5期1154-1157,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61003036 60873138)资助 黑龙江省自然科学基金项目(F201124)资助
关键词 异构多处理器 任务调度 PSO算法 模拟退火 遗传算法 heterogeneous multi-processor PSO scheduling algorithm simulated annealing genetic algorithm
  • 相关文献

参考文献5

二级参考文献65

共引文献49

同被引文献68

  • 1熊聪聪,冯龙,陈丽仙,苏静.云计算中基于遗传算法的任务调度算法研究[J].华中科技大学学报(自然科学版),2012,40(S1):1-4. 被引量:27
  • 2徐洪智,张彬连,覃遵跃.基于QoS的任务分类调度算法[J].计算机应用,2008,28(S2):35-37. 被引量:1
  • 3赵宝江,李士勇,金俊.基于自适应路径选择和信息素更新的蚁群算法[J].计算机工程与应用,2007,43(3):12-15. 被引量:22
  • 4MIAO L, QI Y, HOU D, et al. Energy saving task scheduling for heterogeneous CMP system based on multi-obiective fuzzy genetic algorithm [C] //IEEE International Conference on Systems, Man and Cybernetics, 2009: 3923-3927.
  • 5Khan M A. Scheduling for heterogeneous systems using con strained critical paths [J]. Parallel Computing, 2012, 38 (4-5) : 175-193.
  • 6Daoud M I, Kharma N. A high performance algorithm for static task scheduling in heterogeneous distributed computing systems [J]. Journal of Parallel and Distributed Computing, 2008, 68 (4) : 399-409.
  • 7WEN Y, XU H, YANG J. A heuristic-based hybrid genetic- variable neighborhood search algorithm for task scheduling in heterogeneous multiprocessor system [J]. Information Sciences, 2011, 181 (3): 567-581.
  • 8Ahmad S G, Munir E U, Nisar W, et al. PEGA: A perfor- mance effective genetic algorithm for task scheduling in heteroge- neous systems [C]//HIW_/2-ICESS, 2012: 1082-1087.
  • 9Prescilla K, Immanuel Selvakumar A. Modified binary particle swarm optimization algorithm application to real-time task as- signment in heterogeneous multiprocessor [J]. Microprocessors and Microsystems, 2013, 37 (6-7): 583-589.
  • 10Chen H, Cheng A M K, Kuo Y W. Assigning real-time tasks to heterogeneous processors by applying ant colony optimization [J]. Journal of Parallel and Distributed Computing, 2011, 71 (1): 132-142.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部