期刊文献+

利用稀疏表达检测多幅图像协同显著性目标 被引量:2

A New Algorithm for Detecting Co-Saliency in Multiple Images through Sparse Coding Representation
下载PDF
导出
摘要 提出了一种利用稀疏表达检测多幅图像中协同显著目标的方法。首先用独立变量分析方法训练得到自然图像一组稀疏基,接着求出检测图像的稀疏表达,然后定义了多变量K-L散度度量它们之间的相似性,最后,根据K-L散度性质找出散度下降明显的地方,检测出多幅图像的共同显著性目标。实验结果表明,该方法正确有效,具有和人类视觉特性相符合的显著性目标检测效果。 We propose what we believe to be a new algorithm for detecting the co-saliency in muhiple images. First, we use the independent component analysis to learn and obtain a set of sparse bases of a natural image through filtering the input image and then use them to work out the sparse coding representation of the image to be detected. Second, we define the multi-variable Kullback-Leibler (K-L) divergence to measure the similarity among multiple images. Third, according to the properties of the K-L divergence, we detect the region where the divergence decreases significantly, or the similarity of the image, thus detecting the co-saliency in multiple images. To verify the effectiveness of our algorithm, we test the image co-saliency detection effect with the photos we took. The test results, given in Fig. 3, and their analysis show preliminarily that the image co-saliency detection effect of our new algorithm is the same as that of human visual characteristics.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第2期206-209,共4页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(61273362) 西北工业大学基础研究基金(NPU-FFR-JC201041)资助
关键词 算法 图像处理 独立变量分析 协同显著性 稀疏表达 K—L散度 algorithm, image processing, independent component analysis co-saliency, sparse coding representation, Kullback-Leibler divergence
  • 相关文献

参考文献9

  • 1Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-Tuned Salient Region Detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, 1597-1604.
  • 2Cheng M, Zhang G, Mitra N J, et al. Global Contrast Based Salient Region Detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.
  • 3Chen H. Preattentive Co-Saliency Detection. Proceedings of 17th International Conference on Image Processing, Hong Kong, 2010, 1117-1120.
  • 4Li H, Ngan N. A Co-Saliency Model of Image Pairs. IEEE Trans on Image Processing, 2011, 20(12) : 3365-3375.
  • 5David E, Dan B, Eli S. Cosaliency: Where People Look When Comparing Images. Proceedings of 23rd Annual ACM Symposium on User Interface Software and Technology, 2010, 219-227.
  • 6Wang M, Konrad J, Ishwar P, Jing K, Rowley H. Image Saliency : from Intrinsic to Extrinsic Context. Proceedings of Conference on Computer Vision and Pattern Recognition, 2011,417-424.
  • 7Olshausen A. Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature, 1996.
  • 8Bell A, Sejnoiwski T. The Independent Components of Natural Scenes Are Edge Filters. Vision Research, 37 (23) : 3327- 3338, 1997.
  • 9Hou X, Zhang L. Dynamic Visual Attention: Searching for Coding Length Increments. Proceedings of the Neural Information Processing Systems, 2008, 681-688.

同被引文献20

  • 1HAN Jun-wei, NGAN K N, LI M,et al. Unsupervised extraction of visual attention objects in color images[ J]. IEEE Trans on Circuits and Systems for Video Technology,2005,16( 1 ) : 141-145.
  • 2TSAI Y H. Hierarchical salient point selection for image retrieval[ J ]. Pattern Recognition Letters ,2012,33 ( 12 ) : 1587-1593.
  • 3GUO Chen-lei, ZHANG Li-ming. A novel muhiresolution spatiotem- pmal saliency detection model and its applications in image and video compression[J]. IEEE Trans on Image Processing,2010,19(1 ):185-198.
  • 4MARAT S, PHUOC T H, GRANJON L, et al. Modelling spatio-tem- poral saliency to predict gaze direction for short videos [ J]. Intema- tionat Journal of Computer Vision,2009,82 ( 3 ) :231- 243.
  • 5ZHANG Ying-jie, HAN Jun-wei, GUO Lei. An improved computa- tional model for image saliency detection [ J ]. Journal of Computa- tional Information Systems,2013,9(2) :425-431.
  • 6SEO H J, MILANFAR P. Visual saliency for automatic target detec- tion, boundary detection, and image quality assessment [ C ]//Proc of IEEE International Conference on Acoustics Speech and Signal Pro- cessing. 2010:5578-5581.
  • 7GAd Da-shan, HAN S, VASONCELOS N. Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition[J], IEEE Trans on Pattern Analysis and Machine In- telligence, 2009,31 ( 6 ) : 989 - 1005.
  • 8WU Be, XU Lin-feng. Integrating bottom-up and top-down visual stimulus for saliency detection in news video[ J]. Multimedia Tools and Applications,2013 : 1 - 23.
  • 9ITT1 L, KOCH C, NIEBUR E. A model of saliency-based visual at- temion for rapid scene analysis[ J]. IEEE Trans on Pattern Analy- sis and Machine Intelligence ,1998,20 (11.) :1254-t259.
  • 10HOU Xiao-di, ZHANG Li-qing. Saliency detection:a spectral resi- dual approach [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2007 : 1- 8.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部