期刊文献+

基于流形学习的局部保持PCA算法在故障检测中的应用 被引量:32

Locally preserving PCA method based on manifold learning and its application in fault detection
原文传递
导出
摘要 提出一种新的基于流形学习的数据降维及特征提取方法:局部保持PCA算法(LPPCA).通过在PCA的优化目标中融入流形学习的思想,不仅使投影得到的低维空间和原始样本空间具有相似的全局结构,并且保持了相似的局部近邻结构,克服了传统PCA方法只关注全局结构特征而忽略局部流形特征的缺陷,同时给出了LPPCA在故障检测中的应用方法.S-Curve和Swiss-roll曲面数值仿真和TE过程仿真验证了算法的有效性和优越性. A novel dimensionality reduction and feature extraction method based on manifold learning, locally preserving principal component analysis(LPPCA) is proposed. In order to overcome the defects that the traditional PCA can only keep the structure in global and can not maintain the manifold structure in local, the idea of locality preserving is incorporated into the optimization goals of the PCA. The fault detection based on LPPCA is researched. The validity and superiority of the LPPCA are verified by the S-Curve numerical simulation, Swiss-roll surface numerical simulation and TE process simulation.
出处 《控制与决策》 EI CSCD 北大核心 2013年第5期683-687,共5页 Control and Decision
基金 国家自然科学基金重点项目(61273164 61034005) 国家高技术研究发展计划项目(2012AA040104) 中央高校基本科研业务费项目(N100104102 N120504002)
关键词 主元分析 局部保持 故障检测 流形学习 principal component analysis(PCA) locality preserving projections(LPP) fault detection manifold learning
  • 相关文献

参考文献10

  • 1周东华,李钢,李元.数据驱动的工业过程故障诊断与预测技术-基于PCA与PLS的方法[M].北京:科学出版社,2011.
  • 2李晗,萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策,2011,26(1):1-9. 被引量:262
  • 3Hwang I, Kim S, Kim Y, et al. A survey of fault detection, isolation, and reconfiguration methods[J]. IEEE Trans on Control Systems Technology, 2010, 18(3): 636-653.
  • 4肖应旺,徐保国.改进PCA在发酵过程监测与故障诊断中的应用[J].控制与决策,2005,20(5):571-574. 被引量:17
  • 5张沐光,宋执环.LPMVP算法及其在故障检测中的应用[J].自动化学报,2009,35(6):766-772. 被引量:7
  • 6Shao J D, Rong G. Nonlinear process monitoring based on maximum variance unfolding projections[J]. Expert Systems with Applications, 2009, 36(8): 11332-11340.
  • 7Hu K, Yuan J. Batch process monitoring with tensor factorization[J]. J of Process Control, 2009, 19(2): 288- 296.
  • 8He X F, Yah S C. Face recognition using laplacianfaces[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 9Deng C, He X F. Locally consistent concept factorization for document clustering[J]. IEEE Trans on Knowledge and Data Engineering, 2011, 23(6): 902-913.
  • 10Cho J H, Lee J M, Choi S W, et al. Fault identification for processes monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005, 60(1): 279-288.

二级参考文献78

  • 1Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industry System. London: Springer-Verlag, 2001
  • 2Sharmin R, Shah S L, Sundararaj U. A PCA based fault detection scheme for an industrial high pressure polyethylene reactor. Macromolecular Reaction Engineering, 2008, 2(1): 12-30
  • 3Liu X Q, Xie L, Kruger U, Littler T, Wang S Q. Statistical- based monitoring of multivariate non-Gaussian systems. American Institute Chemical Engineers Journal, 2008, 54(9): 2379-2391
  • 4He X F, Niyogi P. Locality preserving projections. In: Proceedings of the 17th Annual Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2003. 1-8
  • 5Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323
  • 6Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
  • 7Belkin M, Niyogi P. Laplacian eigenmaps and spectral tech- niques for embedding and clustering. Advances in Neural Information Processing Systems, 2002, 14(1): 585-591
  • 8Pan X, Ruan Q Q. Palmprint recognition with improved two-dimensional locality preserving projections. Image and Vision Computing, 2008, 26(9): 1261-1268
  • 9Li J B, Pan J S, Chu S C. Kernel class-wise locality preserving projection. Information Sciences, 2008, 178(7): 1825-1835
  • 10He X F, Cai D, Min W L. Statistical and computational analysis of locality preserving projection. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany: ACM, 2005. 281-288

共引文献280

同被引文献288

引证文献32

二级引证文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部