期刊文献+

具有间歇耦合的复杂动态网络量化同步分析

Quantized synchronization of complex dynamical networks with intermittent couplings
原文传递
导出
摘要 讨论了基于量化控制信号的间歇耦合复杂动态网络的同步动力学,根据脉冲间隔周期和量化器的特征,并利用稳定性理论和Razumikhin定理,分别给出了含时滞和不含时滞下的复杂动态网络同步化准则.网络节点间在一系列分段周期内有耦合,耦合过程中控制作用通过"对数量化器"对同步误差的反馈控制瞬态信号进行量化.所得理论结果进一步应用于由Chua混沌系统为动力节点所构成的复杂动态网络,数值模拟表明了所获理论结果的有效性. This paper discusses the problem on the quantized synchronization of complex dynamical networks with intermittent couplings. Based on the characteristics of the impulsive period and quantizer, the synchronization criteria for complex dynamical networks with delay and without delay are presented respectively, in the framework of the stability theory and Razumikhin theorem. The coupling interactions among nodes exist in a series of piecewise periods. During the coupling process, the instantaneous signals of synchronized feedback errors are imposed to be quantized through logarithmic quantizer. Finally, the proposed results are further applied to complex dynamical networks consisting of Chua's system as network nodes, and numerical simulations illustrate the effectiveness of the results.
作者 叶倩 崔宝同
出处 《控制与决策》 EI CSCD 北大核心 2013年第5期731-735,共5页 Control and Decision
基金 国家自然科学基金项目(61174021 61104155)
关键词 复杂网络 量化控制 时滞 同步 complex networks: quantizedcontrol delay: synchronization
  • 相关文献

参考文献11

  • 1Arenas A, Diaz-Guilera A, Kurths J, et al. Synchronization in complex networks[J]. Physics Reports--Review Section of Physics Letters, 2008, 469(3): 93-153.
  • 2Pikovsky A, Rossenblum M, Kurths J. Synchronization: A universal concept in nonlinear sciences[M]. New York: Cambridge University Press, 2001.
  • 3Jiang G P, Tang W K S, Chen G R. A state-observer- based approach for synchronization in complex dynamical networks[J]. IEEE Trans on Circuits and Systems I: Regular Papers, 2006, 53(12): 2739-2745.
  • 4Zhou J, Lu J A, Lu J H. Adaptive synchronization of an uncertain complex dynamical network[J]. IEEE Trans on Automatic Control, 2006, 51(4): 652-656.
  • 5高洋,李丽香,彭海朋,杨义先,张小红.多重边融合复杂动态网络的自适应同步[J].物理学报,2008,57(4):2081-2091. 被引量:23
  • 6米阳,李秀英,李文林,井元伟.一类时滞复杂动态网络的鲁棒自适应同步问题[J].控制与决策,2008,23(11):1281-1285. 被引量:1
  • 7Cai S M, Zhou J, Xiang L, et al. Robust impulsive synchronization of complex delayed dynamical networks[J]. Physics Letters A, 2008, 372(30): 4990-4995.
  • 8DeLellis P, diBemardo M, Garofalo E Novel decentralized adaptive strategies for the synchronization of complex networks[J]. Automatica, 2009, 45(5): 1312-1318.
  • 9Han X P, Lu J A, Wu X Q. Synchronization of impulsively coupled systems[J]. Int J of Bifurcation and Chaos, 2008, 18(5): 1539-1549.
  • 10Hale J K, Lunel V. Introduction to functional differential equations[M]. New York: Springer-Vedag, 1993.

二级参考文献33

  • 1李季,汪秉宏,蒋品群,周涛,王文旭.节点数加速增长的复杂网络生长模型[J].物理学报,2006,55(8):4051-4057. 被引量:51
  • 2许丹,李翔,汪小帆.复杂网络病毒传播的局域控制研究[J].物理学报,2007,56(3):1313-1317. 被引量:63
  • 3Watts D J, Strogatz S H. Collective dynamics of small- world networks[J]. Nature, 1998, 393(6684): 440-442.
  • 4Strogatz S H. Exploring complex networks[J].Nature, 2001, 410(7024) : 268-276.
  • 5BarabIasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286 (5439) : 509- 512.
  • 6Wang X F, Chen G. Synchronization in small-world dynamical networks[J].Int J Bifurcation Chaos, 2002, 12(2) : 187-192.
  • 7Wang X F, Chen G. Synchronization in scale-free dynamical networks: Robustness and fragility[J]. IEEE Trans, 2002, 49(1): 54-62.
  • 8Lu J H, Yu X H, Chen G R. Chaos synchronization of general complex networks dynamieal [J].Physica A, 2004, 334(1): 281-302.
  • 9Li Z, Chen G R. Robust adaptive synchronization of uncertain dynamical networks[J]. Physics Letters A, 2004, 324(2): 166-178.
  • 10Li C G, Chen G R. Synchronization in general complex dynamical networks with coupling delays [J]. Physica A, 2004, 343(15): 263-278.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部