期刊文献+

无线传感器网络的2.4GHz低功耗低中频射频接收前端的设计 被引量:1

Design of a 2.4GHz low power low-IF RF frontend for wireless sensor metworks
下载PDF
导出
摘要 在0.18μm CMOS工艺下设计了一种用于无线传感器网络的具有低功耗、低中频特性的2.4GHz射频前端。该射频前端由一个共栅结构的可变增益低噪声放大器(VGLNA)和一个低功耗折叠正交吉尔伯特结构混频器构成,内部同时集成了一个给混频器提供IQ差分本振信号的二分频器以及一组缓冲器。其低噪声放大器具有高、低两个增益模式。为了弥补共栅低噪声放大器在增益和噪声等性能方面的不足,选取有一定增益的折叠吉尔伯特有源混频器结构。对共栅结构的低噪声放大器的设计过程、相关负载电感建模过程及混频器设计过程进行了详细分析,对整个射频前端芯片进行了测试,测试结果显示,射频前端核心电路在1.8V电源电压下工作电流为3.2mA,功耗为5.76mW;在高增益模式下,具有26dB的转化电压增益及8dB的噪声系数;在低增益模式下,输入1dB压缩点为-20dBm。 A 2.4GHz low power low-IF RF frontend for wireless sensor networks was designed and implemented in a 0.18~m CMOS technology. The RF frontend consists of a variable gain low noise amplifier (VG-LNA) , a low pow- er folded Gilbert quadrature mixer and a divide-by-two circuit which generates the differential quadrature LO signals for the quadrature balanced mixer. The VG-LNA has the high gain mode and the low gain mode. The folded Gilbert active mixer was chosen to make up for the weakness on gain and noise figure of the common gate LNA. The design of the common gate LNA and the inductor modeling for this LNA, and the design of the mixer, were analyzed in de- tail, and the RF frontend was tested and measured. The measurement results showed that the frontend achieved the 26dB voltage conversion gain and the 8dB noise figure at the high gain mode, and the -20dBm input referenced l dB compression point at the low gain mode, while its DC operating current and power consumption were 3.2mA and 5.76mW under a 1.8V voltage supply.
出处 《高技术通讯》 CAS CSCD 北大核心 2013年第4期413-420,共8页 Chinese High Technology Letters
基金 863计划(2007AA0122A7) 江苏省科技成果转化基金(BA2010073)资助项目
关键词 射频前端 可变增益 低功耗 低噪声放大器(LNA) 折叠正交混频器 无线传感器网络(WSN) frontend, variable gain, low power, low noise amplifier (LNA), folded quadrature mixer, wireless sensor network (WSN)
  • 相关文献

参考文献11

  • 1Lim J H, Cho K S, Seo B L, et al. A Fully Integrated 2.4GHz IEEE 802.15.4 Transceiver for Zigbee Applica- tions. Proceedings of Asia-Pacific Microwave Conference, Yokohama, Japan, 2006. 1779-1782.
  • 2Camus M, Butaye B, Garcia L, et al. A 5.4 mW/O. 07 mm2 2.4 GHz Front-End Receiver in 90 nm CMOS for IEEE 802.15.4 WPAN Standard. IEEE Journal of Solid- State Circuits, 2008, 43 (6) : 1372-1383.
  • 3Lee T H. The Design of CMOS Radio Frequency Integrat- ed Circuits. Cambridge, U. K. : Cambridge University Press, 1998.
  • 4Zhang H, Li Z Q, Zhang M, et al. A 2.4GHz Low-IF RF Frontend for wireless sensor networks. Microwave and Millimeter Wave Technology ( ICMMT), Nanjing, Chi- na, 2010. 225-228.
  • 5张浩,李智群.带ESD保护的2.4GHz低噪声放大器的分析与设计[J].高技术通讯,2010,20(4):403-409. 被引量:3
  • 6Razavi B. Design of Analog CMOS Integrated Circuits. Xian: Xian Jiaotong University Press, 2003.
  • 7Lin C G, Kalkur T S. A 2.4GHz Common-Gate LNA U- sing on-Chip Differential Inductors in a 0. 18μm CMOS Technology. Electrical, Communications, and Computers, 2009.35 : 183-188.
  • 8Gao W, Yu Z P. Scalable Compact Circuit Model and Synthesis for RF CMOS Spiral Inductors. IEEE Transac- tions on Mocrowave Theory and Techniques, 2006.54 ( 3 ) : 1055-1063.
  • 9Borremans J, Thijs S, Wambacq P, et al. A Fully Inte- grated 7. 3 kV HBM ESD-Protected Transformer-Based 4.5 -6 GHz CMOS LNA. IEEE J Solid-State Circuits, 2009, 44(2) :344.
  • 10Hong E P, Hwang Y S, Yoo H J. A low power folded RFfront-end with low flicker noise for direct conversion re- ceiver. Electron Device and Solid Circuits Conference, Taiwan, China, 2007. 453-456.

二级参考文献10

  • 1Lee T H.The Design of CMOS Radio Frequency Integrated Circuits.Cambridge,U.K.:Cambridge University Press,1998.197-220.
  • 2Nguyen T K,Kim C H,Ihm G J,et al.CMOS low-noise amplifier design optimization techniques.IEEE Trans Microwave Theory Tech,2004,52(5):1433-1442.
  • 3Chandrasekhar V,Mayaram K.Analysis of CMOS RF LNAs with ESD protection.In:Proceedings of the IEEE International Symposium on Circuits and Systems,Arizona,America,2002.779-802.
  • 4Sivonen P,Parssinen A.Analysis and optimization of packaged inductively degenerated common-source low-noise amplifiers with ESD protection.IEEE Trans Microwave Theory Tech,2005,53(4):1304-1313.
  • 5Richier C,Salome P,Mabboux G,et al.Investigation on different ESD protection strategies devoted to 3.3V RF applications (2 GHz) in a 0.18μm CMOS process.In:Proceedings of the EOS/ESD Symposium,California,America,2000.251-259.
  • 6Chang C P,Hou J A,Su J,et al.A high gain and low supply voltage LNA for the direct conversion application with 4-kV HBM ESD protection in 90-nm RF CMOS.IEEE Microwave Wireless Component Lett,2006,16(11):188-190.
  • 7Kaamouchi M E,Moussa M S,Delatte P,et al.A 2.4-GHz fully integrated ESD-protected low-noise amplifier in 130-nm PD SOI CMOS technology.IEEE Trans Microwave Theory Tech,2007,55(12):2822-2831.
  • 8Brandano D,Delgado-Restituto M,Ruiz-Amaya J,et al.A 5.3mW,2.4GHz ESD protected low-noise amplifier in a 0.13μm RFCMOS technology.In:Proceedings of the 18th European Conference on Circuit Theory and Design,Seville,Spain,2007.72-75.
  • 9Chandrasekhar V,Hung C M,Ho Y C,et al.A packaged 2.4GHz LNA in a 0.15μm CMOS process with 2kV HBM ESD protection.In:Proceedings of the 28th European Solid-State Circuits Conference,Florence,Italy,2002.347-350.
  • 10Bo-Shih H,Ming-Dou K.New matching methodology of low-noise amplifier with ESD protection.In:Proceedings of the IEEE International Symposium on Circuits and Systems,Island of Kos,Greece,2006.4891-4894.

共引文献2

同被引文献14

  • 1KIM M G, YUN T Y. Analysis and design of feedforward linearity-improved mixer using inductive source degeneration [J]. IEEE Trans Microwave Theo Technol, 2014, 62(2): 323-331.
  • 2CHENG W, ANNEMA A J, WlENKG J M, et al. A flicker noise/IM3 cancellation technique for active mixer using negative impedance [J]. IEEE J Sol Sta Circ, 2013, 48(10): 2390-2402.
  • 3ZHU F, HONG W, CHEN J X, et al. A broadband low-power millimeter-wave CMOS downconversion mixer with improved linearity [J]. IEEE Trans Circ Syst II: Express Briefs, 2014, 61(3): 138-142.
  • 4YEH C I, FENG W S, HSU C Y. 0.9-10.6 GHz UWB mixer using current bleeding for multi-band application [J]. Elec Lett, 2014, 50(3): 186-187.
  • 5LINYS, WENWC, WANGCC. 13.6 mW79GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO-RF isolation [J]. IEEE Microwave & Wireless Compon Lett, 2014, 24(2): 126-128.
  • 6LOU S, LUONG H C. A linearization technique for RF receiver front-end using second-order- intermodulation injection [J]. IEEE J Sol Sta Circ, 2008, 43(11): 2404-2412.
  • 7CROLS J, STEYAERT M S J. A 1.5 GHz highly linear CMOS downconversion mixer [J]. IEEE J Sol Sta Circ, 1995, 30(7): 736-742.
  • 8LEE T H. The design of CMOS radio frequency integrated circuits [M]. Cambridge, UK: Cambridge Uiversity Press, 2001.
  • 9MOLLAALIPOUR M, MIAR N H. An improved high linearity active CMOS mixer: design and volterra series analysis [J]. IEEE Trans Circ & Syst I: Regu Pap, 2013, 60(8): 2092-2103.
  • 10HE S, SAAVEDRA C E. Design of a low-voltage and low-distortion mixer through volterra-series analysis [J]. IEEE Trans Microwave Theo & Technol, 2013, 61(1) : 177-184.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部