期刊文献+

基于Kinect的人体对象视频自动分割 被引量:7

Automatic human video segmentation model using the Kinect
下载PDF
导出
摘要 在视频中把人体对象从复杂背景中自动分割出来是一个非常有挑战性的问题。对此提出了一个新的人体对象自动分割方法,可以在相对复杂的背景下分割出人体对象。首先利用Kinect对视频中的人体骨架信息进行跟踪,然后把骨架信息映射到高质量摄像头拍摄的视频中,最后利用跟踪到的骨架信息对高质量图片中的人体对象进行分割。为了得到这个映射关系,利用SURF特征进行匹配,根据匹配的体征点,采用最小二乘法估计映射参数。最后,利用映射后的人体骨架信息,对图片进行标记,然后采用Lazy-Snapping算法对图片进行人体对象分割。实验结果表明,该方法在640×480分辨率的视频中对人体对象的自动分割可以达到20帧/秒,而且精度与文中提到的其他算法相当。 Automatically extracting human objects from complex background in video images is a very challenging problem. A new approach for human segmentation which can extract human objects from complex background has been proposed in this paper. Firstly, we obtain the tracked human skeleton data in video images with Kinect. Secondly, map them to another image space generated by a HD camera which is capable of providing qualified images. Finally, split human subjects from the high-quality pictures based on the skeleton information. In order to get this mapping relationship we use SURF to do feature match, and estimate the mapping parameters using least squares method according to the signs point of the match. Then, mark the picture according to the human skeleton after mapping. At last the Lazy-Snapping method is adopted to segment the human in the video with the skeleton mark. Experiments conclude that the method can get a segmenting frame rate up to 20 FPS in 640 × 480 resolutions video and approximate accuracy as other algorithms mentioned in the paper.
出处 《电子测量技术》 2013年第4期48-51,共4页 Electronic Measurement Technology
关键词 自动 人体对象分割 SURF Lazy—Snapping automatic human segment SURF Lazy-Snapping
  • 相关文献

参考文献9

  • 1吴从中,贺伟,汤润森,刘扬.光照自适应的疲劳驾驶检测系统[J].电子测量与仪器学报,2012,26(1):60-66. 被引量:15
  • 2杜月林,韩小萱.基于边缘检测的图像超分辨率重建研究[J].国外电子测量技术,2012,31(10):22-26. 被引量:19
  • 3戴金波,赵宏伟,刘君玲,冯嘉.一种针对于描述子的SIFT简化方法[J].仪器仪表学报,2012,33(10):2255-2262. 被引量:17
  • 4FITZGIBBON A, COOK M, SHARP T, et al. Real- time human pose recognition in parts from single depth images [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011: 1297-1304.
  • 5ZLATEVA N, MARINOV A, REYES M, et al. Graph cuts optimization for multi-limb human segmentation in depth Maps[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012:726-732.
  • 6GULSHAN V, LEMPITSKY V, ZISSERMAN A. Humanising grabcut: learning to segment humans using the Kinect[C]. IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011 : 1127-1133.
  • 7BAI X, WANG J, SIMONS D, et al. Video snapcut: robust video object cutout using localized classifiers[C]. SIGGRAPH '09 ACM SIGGRAPH 2009 papers,2009.
  • 8BAY H, TUYTELAARS T, GOOL L V. SURF: speeded up robust features[J]. Computer Vision and Image Understanding (CVIU), 2008, 3951 (3): 404-417.
  • 9ROTHER C, KOLMOGOROV V, BLAKE A. " Grabcut"-interactive foreground extraction using iterated graph cuts [J]. In Proceedings of ACM SIGGRAPH, 2004,23 (3) : 309-314.

二级参考文献35

  • 1赵录刚,吴成柯.基于随机抽样一致性的多平面区域检测算法[J].计算机应用,2008,28(S2):154-157. 被引量:6
  • 2胡永胜,赵军红,贺小亮.高压电力设备红外图像的边缘检测[J].国外电子测量技术,2006,25(11):56-59. 被引量:7
  • 3B. ROMAN, et al. Fatigue Indicators of Drowsy Drivers Based on Analysis of Physiological Signals[C]. ISMDA 2001, LNCS 2199, 2001: 62-68.
  • 4AGREN E. Lateral position detection using a vehicle- mounted camera[D]. Master Thesis of Linkopings Universitet, 2003.
  • 5GU H S, JI Q, ZHU ZH W. Active facial tracking for fatigue detection[C]. Proceedings of Sixth IEEE Workshop on Applications of Computer Vision 2002, WACV 2002, Orlando, 2002: 137-142.
  • 6CHU J W. Driver's eye state detecting method design based on eye geometry feature[C]. 2004 IEEE Intelligent Vehicles Symposium, 2004: 357-362.
  • 7LI S Z, CHU R E LIAO S C. Illumination invariant face recognition using near-infrared images[J]. IEEE Trans. Pattern Aaalysis and Machine Intelligence, 2007, 29(4): 627-639.
  • 8Texas Instruments.TMS320DM643 video/imaging fixed point digital signal processo [EB/OL]. 2010-10-05.
  • 9TERRILLON J C, SHIRAZI M N, FUKAMACHI H, et al. Comparative Performance of Different Skin Chrom- inance Models and Chrominance Spaces for the Automatic Detection of Human Faces in Color Images[C]. Proc. of IEEE Int'l. Conf. on Face and Gesture Recognition, 2000: 54-61.
  • 10蒋建国,陈晓蕊,齐美彬,等.基于肤色模型和Bayes特征的人脸检测方法【c】.全国第18届计算机技术与应用学术会议论文汇编(CACIS),2007:1175-1180.

共引文献48

同被引文献89

  • 1戴小鹏,王华伟,黄璜.一种新的背景模型建立及更新方法[J].计算机应用研究,2006,23(5):239-241. 被引量:3
  • 2宋宏泉.虚拟现实技术在现代医学教育中的应用[J].齐齐哈尔医学院学报,2006,27(8):984-985. 被引量:26
  • 3曹丹华,邹伟,吴裕斌.基于背景图像差分的运动人体检测[J].光电工程,2007,34(6):107-111. 被引量:36
  • 4余涛.Kinect应用开发实战:用最自然的方式与机器对话[M].北京:机械工业出版社,2012.
  • 5吴国斌,李斌,阎骥洲.Kinect人机交互开发实践[M].北京:人民邮电出版社,2013.
  • 6余涛.kinect应用开发实践[M].北京:机械工业出版社,2012:200-265.
  • 7杨晓敏,张奇志,周亚丽.基于kinec!深度信息的人体运动跟踪算法[J].北京信息科技大学学报,2013,28(1):33-36.
  • 8Microsoft. Kinect. Available online: http://www.xbox.eom/en-us/kinect/(accessed on 14 December 2011).
  • 9PrimeSense. Available online: http://www.primesense.com/(accessed on 14 december 2011).
  • 10Amit, B.Dagan, E. (,ershom, K.Alon, L. Yinon, O.; Yaron, Y. Enhanced interactive gaining by blending full-body tracking and ges- ture animation. In roceedings of the ACM SIGGRAPH ASIA 2010 Sketches, Seoal, Korea, 15-18 December 2010.

引证文献7

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部