期刊文献+

区域大地水准面确定中Stokes核函数的应用 被引量:4

APPLICATION OF STOKES KERNELS IN REGIONAL GEOID DETERMINATION
下载PDF
导出
摘要 结合DNSC08-GRA模型中的美国近海测高重力数据,分析比较五种Stokes核函数的计算精度。结果表明,在测试区域,改进的核函数较球形Stokes核函数在精度上有了明显的提高(约3.4 cm);而各改进核函数之间差异不明显。利用GPS/水准数据进行检核发现,拟合前后的大地水准面约有1.17 m的系统差,拟合后标准差减小约7 cm。 The accuracy of different kernels are compared with each other by using the gravity data along the offshore of American sea in DNSC08-GRA model. As the results show, in our test region, the modified Stokes ker- nels can improve the accuracy by 3.4 cm compared with the spherical Stokes kernel, while the difference between different modified kernels is tiny. When verifying the results with GPS/leveling data, it demonstrates the existence of a 1.17 m systematic variation between the geoid fitting before and after. Besides, all the computing accuracy can improved by 7 cm after fitting.
作者 傅露 褚永海
出处 《大地测量与地球动力学》 CSCD 北大核心 2013年第2期110-113,119,共5页 Journal of Geodesy and Geodynamics
基金 国家重点基础研究发展计划(973计划)(2013CB733301) 国家自然科学基金(41210006)
关键词 Stokes核函数 改进的Stokes核函数 大地水准面 重力数据 GPS 水准数据 Stokes kernel modified Stokes kernel geoid determination gravity data GPS/leveling data
  • 相关文献

参考文献11

  • 1万晓云,于锦海.移去恢复法在逆Stokes公式计算中的精度分析[J].武汉大学学报(信息科学版),2012,37(1):77-80. 被引量:6
  • 2Sjoberg L E and Hunegnaw A. Some modifications of Stokes formula that account for truncation and potential coefficient errors [ J ]. Journal of Geodesy,2000,7g (2) :232 - 238.
  • 3Vanicek P, Will E and Featherstone. Performance of three types of Stokes' s kernel in the combined solution for the ge- oid [ J ]. Journal of Geodesy, 1998,72 (12) :684 - 697.
  • 4Hirt C. Mean kernels to improve gravimetric geoid determina- tion based on modified Stokes' s integration [ J ]. Computers & Geosciences, 2011,37 ( 11 ) : 1 836 - 1 842.
  • 5Featherstone W E. Software for computing five existing types of deterministically modified integration kernel for gravimet- ric geoid determination [ J ]. Computers & Geosciences, 2003,29(2) :183 - 193.
  • 6Wong L and Gore R. Accuracy of geoid heights from modified Stokes kernels [ J ]. Geophysical Journal of the Royal Astro- nomical Society, 1969, 18(1) :81 -91.
  • 7Heck B and Gruninger W. Modification of Stokes' s integralformula by combining two classical approaches [ R ]. Van- couver, Canada: Proceedings of the XIX General Assembly of the International Union of Geodesy and Geophysics, 1987, (2) :309 -337.
  • 8Vanfc~k and Kleusberg. The Canadian geoid-Stokesian ap- proach [ J ]. Manuscripta Geodaetica, 1987, 12 ( 2 ) : 86 - 98.
  • 9Paul M K. A method of evaluating the truncation error coef- ficients for geoidal height [ J ]. Bulletin Geodiesique, 1973, 110( 1 ) :413 -425.
  • 10Featherstone W E, Evans J D and Olliver J G. A Meissl- modified Vanic~k-Kleusberg kernel to reduce the truncation error in gravimetric geoid computations [ J ]. Journal of Geod- esy, 1998,72 (3) : 154 - 160.

二级参考文献11

  • 1于锦海,张传定.卫星测高混合边值问题的球谐级数解法[J].地球物理学报,2005,48(3):561-566. 被引量:6
  • 2Sanso F. A Dscussion on the Altimetry-gravimetry Problem[J]. Geodesy in Transition Calgary, 1983:71-107.
  • 3Holota P. The Altimetry-gravimetry Boundary Val- ue Problem: Weak solution, V-Ellipticity [J]. Boll Geod Sc Aff, 1983, 112:70-84.
  • 4Svesson S L. Some Remarks on the Altimetry-gra- vimetry Problem [ J ]. Manuscripta Geodaetica, 1988, 13:63-74.
  • 5Svensson S L. Pseudodifferential Operators--a New Approach to the Boundary Problem of Physical ge- odesy[J] Manuscripta Geodaetica, 1983, 8: 322-342.
  • 6Yu Jinhai, Wu Xiaoping. The Solution of Mixed Boundary Value Problems with the Reference Ellip- soid as Boundary[J]. Journal of Geodesy, 1997, 71 (8): 454-460.
  • 7Hwang C. Inverse Vening Meinesz Formula and Deflection-geoid Formula: Applications to the Pre- dictions of Gravity and Geoid over the South China Sea[J]. Journal of Geodesy, 1998,72(5) :304-312.
  • 8Soltanpour A, Nahavandchi H, Ghazavi K. Recov- ery of Marine Gravity Anomalies from ERS1, ERS2 and ENVISAT Satellite Altimetry Data for Geoid Computations Over Norway[J]. Studia Geophysica Et Geodaetica, 2007, 51(3): 369-389.
  • 9邓凯亮,暴景阳,章传银,刘雁春,许军,唐岩.联合多代卫星测高数据确定中国近海稳态海面地形模型[J].测绘学报,2009,38(2):114-119. 被引量:19
  • 10王瑞,李厚朴.基于逆Stokes公式的测高重力反演中央区效应计算[J].武汉大学学报(信息科学版),2010,35(4):467-471. 被引量:6

共引文献5

同被引文献35

  • 1郭海荣,焦文海,杨元喜,刘光明.1985国家高程基准的系统差[J].武汉大学学报(信息科学版),2004,29(8):715-719. 被引量:17
  • 2李叶才.关于Hotine积分的若干注记[J].武汉测绘科技大学学报,1989,14(1):38-47. 被引量:4
  • 3李建成.我国现代高程测定关键技术若干问题的研究及进展[J].武汉大学学报(信息科学版),2007,32(11):980-987. 被引量:67
  • 4HOFMANN-WELLENHOF B, MORITZ H. Physical ge odesy [M]. second edition, Springer Wien New York,2006.
  • 5FEATHERSTONE W E, EVANS J D, OLIdVER J G. A Meissl-modified Vanicek and Kleusberg kernel to re- duce the truncation error in gravimetric geoid computa- tions[J]. Journal of Geodesy, 1998,72 : 154-160.
  • 6SJOBERG L E, HUNEGNAW A. Some modifications of Stokes formula the account for truncation and poten- tial coefficient errors[J]. Journal of Geodesy, 2000,74 .. 232-238.
  • 7SJOBERG L E. A computational scheme to model the geoid by the modified Stokes formula without gravity reductions[J]. Journal of Geodesy, 2003,77 : 423-432.
  • 8ELLMANN A. Two deterministic and three stochastic modifications of Stokes's formula:a case study for the Baltic countries[J]. Journal of Geodesy, 2005,79 : 11-23.
  • 9VANICEK P, FEATHERSTONE W E. Performamee of three types of Stokes's kernel in the combined solu- tion for the geoid[J]. Journal of Geodesy, 1998,72 : 684 -697.
  • 10EVANS J D, FEATHERSTONE W E. Improved con vergence rates for the truncation error in gravimetric geoid determination[J]. Journal of Geodesy, 2000, 74: 239-248.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部