期刊文献+

基于覆盖约简的粒度空间及粗糙集模型研究

Granular Spaces Based on Covering Reduction and Its Examing of Rough Set Model
下载PDF
导出
摘要 在覆盖粗糙集的并可约粒度空间模型研究中,针对从覆盖到基的约简规则,结合偏序关系的哈斯图,给出一种对覆盖约简的新方法.另外,在并可约粒度空间上讨论了粗糙集模型的相关性质. Based on the research of the union reducible granular spaces on covering rough set, aiming at the construction rule from the covering to the basis and combining with the Hasse diagram of partial order relation, a new reduction method is proposed. Meanwhile, the relevant properties of rough set model based on the union reducible granular spaces are studied.
作者 陈志恩
出处 《宁夏大学学报(自然科学版)》 CAS 2013年第1期7-10,共4页 Journal of Ningxia University(Natural Science Edition)
基金 宁夏自然科学基金资助项目(NA11253) 宁夏高校科研基金资助项目(20110237) 宁夏师范学校创新团队子项目(2070011)
关键词 粒度空间 偏序关系 约简 粗糙集模型 granular spaces partial order relation reduction rough set model
  • 相关文献

参考文献9

  • 1PAWLAK Z. Rough set[J]. International Journal of Information and Computer Science, 1982, 11 (5): 341-356.
  • 2SLOWINSKI R, VANDERPOOTEN D. A generalized definition of rough approximation based on similari- ty[J].IEEE Trans on Knowledge and Data Engineer-ing, 2000,12(2) :331-336.
  • 3ZHU Willian, WANG Feiyue. Reduction and axiom- ization of covering generalized rough sets[J]. Informa- tion Science, 2003,152(1) : 217-230.
  • 4BONIKOWSKI Z, BRYNIARSKI E, Wybraniec-Skar- dowska U. Extension and intentions in the rough set theory [J].Information Science, 1998, 107 ( 1 ) 149-167.
  • 5MORDESON J N. Rough set theory applied to (fuzzy) ideal theory[J]. Fuzzy Sets and System, 2001,121 (2) 315-324.
  • 6ZHU Willian. Properties of the forth type of covering- based rough sets[J]. Information Science, 2003,152 (1) :217-230.
  • 7BANERJEE M,PAL S K. Roughness of a fuzzy set[J]. In- formation and Computer Science, 1996,93 (3) : 235-245.
  • 8DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets [J]. Information and Computer Science, 1990,17(2): 191-209.
  • 9苗夺谦,徐菲菲,姚一豫,魏莱.粒计算的集合论描述[J].计算机学报,2012,35(2):351-363. 被引量:54

二级参考文献29

  • 1Yao Y Y. On generalizing rough set theory//Proceedings of the 9th International Conference (RSFDGrC). Chongqing, China, Springer, 2003: 44-51.
  • 2Yao Y Y. Information granulation and rough set approxima tion. International Journal of Intelligent Systems, 2001, 16 (1): 87-104.
  • 3Yao Y Y, Zhou B. A logic language of granular computing// Proceedings of the 6th IEEE International Conference on Cognitive Informatics. Beijing, China, 2006:178-185.
  • 4Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Publishers, 1991.
  • 5Ganter B, Wille R. Formal Concept Analysis: Mathematical Foundations. New York: Springer Verlag, 1999.
  • 6Wille R. Restructuring lattice theory: An approach based on hierarchies of eoncepts//Ivan Rival. Ordered Sets. Dordecht Boston: Reidel, 1982:445-470.
  • 7Doignon J P, Falmagne J C. Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 1985, 23(2): 175-196.
  • 8Doignon J P, Falmagne J C. Knowledge Spaces. German: Springer, 1999.
  • 9Duntsch I, Gediga G. A note on the correspondences among entail relations, rough set dependencies, and logical conse quence. Mathematical Psychology, 2001, 45(2) :393-401.
  • 10Zhu W, Wang F Y. Properties of the first type of covering based rough sets//Proceedings of the ICDM 06. Hong Kong, China, 2006:407-411.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部