期刊文献+

纤维素酶家族及其催化结构域分子改造的新进展 被引量:25

Molecular engineering of cellulase catalytic domain based on glycoside hydrolase family
原文传递
导出
摘要 纤维素酶的分子改造是其催化性能改进及催化效率提升的重要手段。近年来,组学技术与结构测定技术的迅速发展,人们已建立了包括糖苷水解酶(Glycoside hydrolase,GH)在内的碳水化合物活性酶组分数据库。通过对同一蛋白家族进行序列比对、分子进化分析与祖先基因重构,以结构模建分析为指导的纤维素酶分子改造,可以明显缩小序列或结构的搜索空间,加快酶分子改造的速度,增大理性设计成功的概率;同时针对催化中心活性架构的分析可以进一步阐明纤维素酶的催化机理与酶分子持续性降解机制。文中主要对纤维素酶家族及其催化结构域的分子改造取得的最新进展作了综述。在后基因组时代基于蛋白质家族中的海量数据分析,以其保守结构信息为指导的理性设计,将会成为纤维素酶分子改造的重要方向,从而推动生物质转化工艺的快速发展。 Molecular engineering of cellulases can improve enzymatic activity and efficiency. Recently, the Carbohydrate-Active enZYmes Database (CAZy), including glycoside hydrolase (GH) families, has been established withthe development of Omics and structural measurement technologies. Molecular engineering based on GH families can obviously decrease the probing space of target sequences and structures, and increase the odds of experimental success. Besides, the study of cellulase active-site architecture paves the way toward the explanation of catalytic mechanism. This review focuses on the main GH families and the latest progresses in molecular engineering of catalytic domain. Based on the combination of analysis of a large amount of data in the same GH family and their conservative active-site architecture information, rational design will be an important direction for molecular engineering and promote the rapid development of the conversion of biomass.
出处 《生物工程学报》 CAS CSCD 北大核心 2013年第4期422-433,共12页 Chinese Journal of Biotechnology
基金 国家重点基础研究发展计划(973计划)(No.2011CB707402) 国家高技术研究发展计划(863计划)(No.2012AA10180402) 国家自然科学基金(No.31170071) 山东省国际科技合作项目计划(鲁科合字[2011]176号第6项)资助~~
关键词 纤维素酶 糖苷水解酶家族 结构生物信息学 分子改造 理性设计 cellulase, glycoside hydrolase family, structural bioinformatics, molecular engineering, rational design
  • 相关文献

参考文献2

二级参考文献49

  • 1Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials. Science, 2006, 311(5760): 484-489.
  • 2Lynd L R, van Zyl W H, McBride J E, et al. Consolidated bioprocessing of cellulosic biomass: an update. Curt Opin Biotechnol, 2005, 16(5): 577-583.
  • 3Bayer E A, Belaich J P, Shoham Y, et al. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol, 2004, 58:521-554.
  • 4Doi R H, Kosugi A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol, 2004, 2(7): 541-551.
  • 5Ding S Y, Rincon M T, Lamed R, et al. Cellulosomal scaffoldin- like proteins from Ruminococcus flavefaciens. J Bacteriol, 2001, 183(6): 1945-1953.
  • 6Rincon M T, Ding S Y, McCrae S I, et al. Novel organization and divergent dockerin specificities in the cellulosome system of Ruminoeoceus flavefaeiens. J Bacteriol, 2003, 185(3): 703-713.
  • 7Shimon L J, Bayer E A, Morag E, et al. A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. Structure, 1997, 5(3): 381-390.
  • 8Noach I, Frolow F, Jakoby H, et al. Crystal structure of a type- Ⅱ cohesin module from the Bacteroides cellulosolvens cellulosome reveals novel and distinctive secondary structural elements. J Mol Biol, 2005, 348(1): 1-12.
  • 9Lytle B L, Volkman B F, Westler W M, et al. Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium- binding domain. J Mol Biol, 2001, 307(3): 745 753.
  • 10Adams J J, Webb B A, Spencer H L, et al. Structural characterization of type Ⅱ dockerin module from the cellulosome of Clostridium therrtmcellum: calcium-induced effects on conformation and target recognition. Biochemistry, 2005, 44(6): 2173-2182.

共引文献17

同被引文献527

引证文献25

二级引证文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部