期刊文献+

锥度量空间中的广义压缩不动点定理

Fixed Point Theorem for the Generalized Contractive Mappings in Cone Metric Spaces
下载PDF
导出
摘要 文章研究了锥度量空间中的广义压缩映像不动点的存在唯一性问题,放宽了映像的压缩条件,推广了度量空间中的经典结论. The existence and uniqueness of fixed points of generalized contractive mappings was established by relaxing the contractive conditions. The results extend the classical theorem in metric spaces.
出处 《太原师范学院学报(自然科学版)》 2013年第1期3-6,共4页 Journal of Taiyuan Normal University:Natural Science Edition
基金 国家青年基金项目(11201272) 山西省青年基金(2010021002-1)资助
关键词 锥度量空间 广义压缩映像 不动点 存在唯一性 Cone metric spaces generalized contractive mappings {ixed points existenceand uniqueness
  • 相关文献

参考文献13

  • 1Kantorovich LV. The majorant principle and Newton's method[J].Dokl. Akad. Nauk. SSSR(NS), 1951 (76) : 17-20.
  • 2Kantorovich LV. On some further applications of the Newton approximation method[J]. Vestn. Leningr. Univ. Ser. Mat. Mekh. Astron, 1957(12) : 68-103.
  • 3PP. Zabreiko. K-metric and K-normed spaces:survey[J]. Collect. Math. , 1997 (48) :825-859.
  • 4Deimlng K. Nonlinear functional analyss[M]. Berlin: Springer-Varlag, 1985.
  • 5Aliprantis CD,Tourky R. Cones and duality[M]. Providence:American Mathematical Society, 2007.
  • 6Huang LG,Zhang X. Cone metric spaces and fixed point theorems of contractive mappings[J]. J. Math. Anal. Appl. , 2007, 332:1 467-1 475.
  • 7Abbas M,Jungck G. Common fixed point result for noncommuting mappings without continuity in cone metric spaces[J]. J. Math. Anal. Appl. ,2008,341 :416-420.
  • 8J ungck G,Radenovic S, Radojevic S, et al. Common fixed point theorems for weakly compatible pairs on cone metric spaces [J]. Fixed Point Theory and Applications, Vol. 2009, Article ID 643840,1-13.
  • 9Karapinar E. Fixed point theorems in cone Banach spaces[J]. Fixed point theory and applications,2009, Art. ID 609281,1-9.
  • 10Olaleru JO. Some generalizations of fixed point theorems in cone metric spaces[J]. Fixed Point Theory and applications,2009, Article ID 657914,1-10.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部