期刊文献+

基于偏正态分布联合位置、尺度与偏度模型的极大似然估计 被引量:13

Maximum Likelihood Estimator for Joint Location,Scale and Skewness Models of the Skew-normal Distribution
原文传递
导出
摘要 本文提出了基于偏正态分布联合位置、尺度与偏度模型,通过极大似然迭代算法给出了联合模型参数的估计方法,最后通过随机模拟和实例研究说明了提出的模型与方法的有效性。 In this paper, we propose a joint location, scale and skewness models based on the skew-normal distribution, investigate the maximum likelihood estimator of this model. The proposed procedures perform well in simulation studies and a real data analysis conducted in this paper.
出处 《数理统计与管理》 CSSCI 北大核心 2013年第3期433-439,共7页 Journal of Applied Statistics and Management
基金 国家自然科学基金资助项目(11126309 11261025) 云南省自然科学基金资助项目(2009ZC039M 2011FB016 2011FZ044) 昆明理工大学博士科研启动基金资助项目(2009-024)
关键词 偏正态分布 联合位置 尺度与偏度模型 极大似然估计 skew-normal distribution, joint location, scale and skewness models, maximum likelihood estimator
  • 相关文献

参考文献11

二级参考文献36

  • 1Park R E. Estimation with heteroscedastic error terms[J]. Econometrica, 1966, 34: 888.
  • 2Doray L. IBNR Reserve under a loglinear location-scale regression model[J].Virginia: Casualty Actuarial Society Forum Casualty Actuarial Society Arlington,1994,2: 607-652.
  • 3Paul S R, Islam A S. Joint estimation of the mean and dispersion parameters in the analysis of proportions:a comparison of efficiency and bias[J]. The Canadian Journal of Statistics, 1998, 26: 83-94.
  • 4Verbyla A P. Variance heterogeneity: residual maximum likelihood and diagnostics[J]. Jour- nal of the Royal Statistical Society, Series B, 1993, 52: 493-508.
  • 5Jie Mi. MLE of paramenters of location-scale distribution for complete and partially grouped data[J]. Journal of Statistical Planning and Inference, 2006, 136: 3565-3582.
  • 6Taylor J T, Verbyla A P. Joint modelling of location and scale parameters of the t distribution[J]. Statistical Modelling, 2004, 4: 91-112.
  • 7Yageen T P, Sreekumar N V. Estimation of location and scale parameters of a distribution by U-statistics based on best linear function of order statistics[J]. Journal of Statistical Planning and Inference, 2008, 138: 2190-2200..
  • 8Park R E. Estimation with Heteroscedastic Error Terms[J]. Econometrica, 1966, (34).
  • 9Harvey A C. Estimating Regression Models with Multiplicative Heteroscedasticity[J]. Econometrica, 1976,(44).
  • 10Aitkin M. Modelling Variance Heterogeneity in Normal Regression Using GLIM[J]. Applied Statistics, 1987,(36).

共引文献12

同被引文献44

  • 1方匡南,吴见彬,朱建平,谢邦昌.信贷信息不对称下的信用卡信用风险研究[J].经济研究,2010,45(S1):97-107. 被引量:64
  • 2Gold{eld S M, Quandt R E. A Markov Model {or Switching RegressionEJ3. Journal o{ Econometrics, 1973, (1).
  • 3McLachlan G, Peel D. Finite Mixture ModelsEM3. New York: Wiley, 2000.
  • 4Yao W X, Wei Y,Yu C. Robust Mixture Regression Models Using t-DistributionEJ3. Computational Statistics and Data A nalysis, 2014,(71).
  • 5Song W X, Yao W X,Xing Y R. Robust Mixture Regression Models Fitting by Laplace DistributionrJ~. Computational Statistics and Data Analysis, 2014,(71).
  • 6Liu M, Lin T I. A Skew-normal Mixture Regression Model~J3. Educational and Psychological Measurement, 2014, (74).
  • 7Azzalini A. A Classo{ Distributions Which Includes the Normal Ones[-J3. Scadinavian Journal of Statistics, 1985, (2).
  • 8Nadarajah S, Kotz S. Skew Distributions Generated {rom Di{{erent Families[-J]. Acta Applicandae Mathematica, 2006, (91).
  • 9Xie F C, Wei B C, Lin J G. Homogeneity Diagnostics for Skew-normal Nonlinear Regression Models[-J]. Statistics and Probability Letters,2009, 79(6).
  • 10Wu L C, Zhang Z Z,Xu D K. Joint Modeling of Location and Scale Models of Skew-normal Dislribution~J~.Journal of Statistical Computation and Simulation, 2013, 83(7).

引证文献13

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部