期刊文献+

基于低秩矩阵恢复的视频背景建模 被引量:5

Video Background Modeling Using Low-rank Matrix Recovery
下载PDF
导出
摘要 针对传统背景建模存在的问题,文中基于低秩矩阵恢复原理,直接从视频序列中分离出前景物体和背景模型。已有低秩矩阵恢复算法的迭代计算过程中涉及大量的奇异值分解,而这些奇异值分解一般非常耗时且不够简洁,文中在非精确增广拉格朗日乘子法中引入线性时间奇异值分解算法,以得到更加有效的背景建模算法。基于实际视频序列实验,结果表明该改进算法具有更好的建模效果和较少的运算时间。 In this paper, a novel method is present based on low-rank matrix recovery, which can directly obtain background model as well as foreground objects from the video sequence. As the main computation of existing algorithms of low-rank matrix recovery is the singular value decomposition, most of which are time-consuming and not concise enough,the linear time SVD algorithm is introduced to the inexact augmented Lagrange multiplier method, and we get a more efficient background modeling algorithm. We test our algorithm on real video, and the experimental results show that our approach obtains good results and less time-consuming, compared to the exact and inexact augmented Lagrange multiplier method.
作者 杨敏 安振英
出处 《南京邮电大学学报(自然科学版)》 北大核心 2013年第2期86-89,96,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 江苏省自然科学基金(BK2011758)资助项目
关键词 低秩矩阵恢复 视频背景建模 增广拉格朗日乘子法 线性时间奇异值分解算法 low-rank matrix recovery video background modeling augmented Lagrange multiplier method linear time SVD algorithm
  • 相关文献

参考文献12

  • 1BOUWMANS T, BAF F E, VACHON B. Statistical background mod- eling for foregromld detection : A survey [ J ]. Handbook of Pattern Recognition and Computer Vision, World Scientific Publishing, 2010,4(2) :18 - 189.
  • 2BOUWMANS T. Subspace learning for background modeling:A survey [J]. Recent Patent on Computer Science,2009,2(3):223-234.
  • 3WRIGHT J, GANESH A,RAO S,et al. Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization [ C ] //Proceedings of Neural Information Processing Systems (NIPS). 2009.
  • 4LIN Zhouchen. Some software packages for partial SVD computation [ EB/OL]. ( 2011-08-09 ) [ 2012-06-21 ]. http:///arxiv, org/abs/ 1108. 1548v2.
  • 5CANDES E J, LI X, MA Y,et al. Robust principal component analy- sis? [ J ]. Journal of the ACM ,2011,58 ( 3 ) :233 - 279.
  • 6CHANDRASEKARAN V,SANGHAVI S, PARRILO P, et al. Rank- sparsity incoherence for matrix decomposition [ J ]. SIAM Journal on Optimization ,2011,21 ( 2 ) :572 - 596.
  • 7LIN Z, CHEN M, WU L,et al. The augmented Lagrange multiplier method for exact recovery of a corrupted low-rank matrix[ R]. Illi- nois : University of Illinois,2010.
  • 8YUAN X, YANG J. Sparse and low-rank matrix decomposition via altemating direction methods [ R ]. Hang Kong: Hang Kong Baptist University, 2009.
  • 9LIN Z, GANESH A, WRIGHT J, et al. Fast convex optimization al- gorithms for exact recovery of a corrupted low-rank matrix [ C ] // Proceedings of Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). 2009.
  • 10GANESH A,L1N Z,WRIGHT J ,et al. Fast algorithms for recovering a corrupted low-rank matrix[ C ]//lnternaronal Workshop on Computa- tional Advances in Multi-Sensor Adaptive Pwcessing. 2009.

同被引文献42

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部