期刊文献+

变参式Tikhonov正则化图像复原算法 被引量:4

Varying-Parameter Tikhonov Regularization Image Restoration
原文传递
导出
摘要 正则化方法是近年来流行的图像复原算法。研究了周期边界条件下Tikhonov正则化的预处理共轭梯度算法,提出了新的预处理矩阵和变化正则化参数的方法。正则化参数先取较大值,抑制复原图像中的噪声,得出收敛的结果来修正初始梯度;再取较小值,用来增强复原图像中的细节。对一组图像复原基准问题的实验结果表明,与当前流行的正则化图像复原算法比较,该算法的图像复原效果更佳。 Regularization is popular in image restoration recent years. We analyze the preconditioning conjugate gradient method with Tikhonov regularization under the periodic boundary conditions, and propose a new preconditioning matrix and the varying regularization parameter method. At first, we choose a larger regularization parameter to restrain the noise in the restored image, get a convergent result to modify the initial gradient. After that, we choose a smaller one to increase the details. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm performs favorably in comparison with several state-of-the-art regularization image restoration algorithms.
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第5期93-99,共7页 Laser & Optoelectronics Progress
基金 国家973计划(2009CB72400603) 国家自然科学基金科学仪器专项(61027002) 国家自然科学基金(60972100)资助课题
关键词 图像处理 图像复原 周期边界条件 TIKHONOV正则化 变正则化参数 image processing image restoration periodic boundary condition Tikhonov regularization varying regularization parameter
  • 相关文献

参考文献12

二级参考文献82

共引文献47

同被引文献54

  • 1范新南,郭建甲.一种新的自适应工程图像分割算法[J].计算机测量与控制,2006,14(3):395-397. 被引量:9
  • 2张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 3伍春洪,杨扬,游福成.一种基于Integral Imaging和多基线立体匹配算法的深度测量方法[J].电子学报,2006,34(6):1090-1095. 被引量:9
  • 4朱立新,王平安,夏德深.引入耦合梯度保真项的非线性扩散图像去噪方法[J].计算机研究与发展,2007,44(8):1390-1398. 被引量:13
  • 5Y C John, C C Ying. Underwater image enhancement by wavelength compensation and dehazing [J]. IEEE Transactions on Image Processing, 2012, 21(4): 1756-1769.
  • 6Y S Yoav, K Nir. Recovery of underwater visibility and structure by polarization analysis [J]. IEEE J Oceanic Engineering, 2005, 30(3): 570-587.
  • 7C Liu, W Meng. Removal of water scattering [C]. Proceedings of the 2nd International Conference on Computer Engineering and Technology, 2010. 35-39.
  • 8I Kashif, A Rosalina, O Azam, et al.. Underwater image enhancement using an integrated color model [J]. International Journal of Computer Science, 2007, 34(2): 2-12.
  • 9B S Norsila, F B W A Wan, B Baharum, et al.. Image enhancement of underwater habitat using color correction based on histogram [C]. Proceedings of Second International Visual Informatics Conference, 2011. 289-299.
  • 10T C Aysun, E Sarp. Visual enhancement of underwater images using empirical mode decomposition [J]. Expert Systems with Applications, 2012, 39(1): 800-805.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部