期刊文献+

内加热式N_2O单组元推力器预热过程仿真与试验 被引量:2

Simulation and experiment for preheating process of N_2O monopropellant thruster with inner-heater
原文传递
导出
摘要 为了提高N2O单组元推力器预热效果,对推力器结构做出改进,引入内加热的预热模式.在模拟真空环境下开展了内加热式推力器预热试验,以10W功率加热5 800s,使催化剂温度达到260℃(533K),证明了内加热模式的可行性及优越性.开展了内加热式N2O单组元推力器系统的三维建模,并利用有限元软件对推力器预热过程进行了分析,得到了推力器结构温度场随时间的变化情况.数值分析结果与试验数据吻合良好,验证了所用仿真模型的准确性.进一步对简化结构后的内加热式推力器在模拟太空环境下分别施加10,5,3W加热功率时的预热过程开展了数值仿真研究,结果表明:10W和5W加热功率能使催化剂在3600s内达到工作温度250℃,可为N2O单组元推力器的实际应用提供参考. In order to promote the preheating effect of N2O monopropellant thruster,the structure of the thruster was improved and inner-heating mode was set up.The preheating experiment of the thruster with inner-heater was conducted in a vacuum chamber,and the catalyst was heated to 260 ℃(533 K) with 10 W after 5 800 s,confirming the feasibility and advantage of the inner-heating mode.3-D model of the thruster was built and finite element software was utilized to analyze the preheating process.Time-dependent temperature filed of the structure was obtained.Numerical result agrees well with the experimental data,which demonstrates the accuracy of the simulation model.Then a simplified system model of the thruster with inner-heater was designed and 10,5,3 W power were utilized to simulate the preheating process in space environment.The result shows that the catalyst will be heated to 250 ℃ with 10W and 5 W power in 3 600 s,which can provide some references for the practical application of N2O monopropellant thruster.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2013年第3期556-560,共5页 Journal of Aerospace Power
关键词 N2O 单组元推力器 内加热 预热 有限元分析 N2O monoprorellant thruster inner-heating preheating finite element analysis
  • 相关文献

参考文献15

二级参考文献54

共引文献28

同被引文献29

  • 1孙威,方杰,张佳,李乐,蔡国飙.N_2O单组元推力器预热过程有限元分析[J].航空动力学报,2009,24(9):2152-2156. 被引量:5
  • 2汪琼华,汤建华,洪鑫,李小芳,姜文龙,朱智春.小推力单元肼推力器温度场数值分析 (I)实验验证和保温套筒对温度场影响探析[J].火箭推进,2007,33(1):18-22. 被引量:5
  • 3Zikirov V,Sweeting M.Nitrous oxide as a rocket propellant[J].Acta Astronautica,2001,48(5):353-362.
  • 4Dyer J,Doran E,Dunn Z,et al.Design and development of a 100 km nitrous oxide/paraffin hybrid rocket vehicle[R].AIAA-2007-5362,2007.
  • 5Bettella F,Moretto E,Geremia N,et al.Development of 20 kN hybrid rocket booster[R].AIAA-2013-4140,2013.
  • 6Span R,Wagner W.Equations of state for technical applications Ⅰ:simultaneously optimized functional forms for nonpolar and polar fluids[J].International Journal of Thermophysics,2003,24(1):1-39.
  • 7Lemmon E W,Span R.Short fundamental equations of state for 20 industrial fluids[J].Journal of Chemical Engineering,2006,51(3):785-850.
  • 8Dyer J,Doran E,Dunn Z,et al.Modeling feed system flow physics for self-pressurizing propellants[R].AIAA-2007-5702,2007.
  • 9Ihmels E C,Gmehling J.Densities of sulfur hexafluoride and dinitrogen monoxide over a wide temperature and pressure range in the sub-and supercritical states[J]. International Journal of Thermophysics,2002,23(3):709-743.
  • 10Mattick S J,Lee C P,Hosanggadi A,et al.Progress in modeling pressurization in propellant tanks[R].AIAA-2010-6560,2010.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部