期刊文献+

基于单波长外腔共振和频技术产生波长可调谐589nm激光及钠原子饱和荧光谱的测量 被引量:3

The wavelength tunable 589 nm laser output based on singly resonant sum-frequency generation and the measurement of saturate fluorescence spectrum of sodium atom
原文传递
导出
摘要 本文基于新型单波长外腔共振和频技术实现了转换效率高、波长可调谐589nm激光的输出,其中基频光波长分别为1583nm和938nm,和频晶体为周期极化铌酸锂.在1583nm激光频率被锁定到外部环形腔腔模后,通过对938nm激光的频率扫描实现了输出功率4.96mW,调谐范围7GHz的589nm激光输出,并采用声光调制器的伺服反馈技术有效提高了输出功率的稳定性.最后采用该光源对钠原子在348—413K(75—140C)时D2线的饱和荧光谱进行了测量.观察到了多普勒背景下钠D2a,D2b以及Crossover的亚多普勒结构,其均可为589nm频率的锁定提供参考信号. A wavelength-tunable laser output at 589 nm with high conversion efficiency based on sum-frequency generation by using the technique of single-wavelength extra-cavity resonance is achieved. The two fundamental wavelengths are 1583 nm and 938 nm and the nonlinear crystal is the period-poled lithium niobate. After the frequency of 1583 nm laser was locked to the cavity mode and the frequency of 938 nm laser was scanned, a 589 nm laser output with power of 4.96 mW and wavelength tuning range of 7 GHz was obtained and the stability of the output power is improved effectively with the help of servo feedback loop technique of acousto-optic- modulator. Finally, based on this laser, the saturated fluorescence spectrum of sodium D 2 line in the temperature range of 348—413 K (75—140 C) were measured. The Doppler-free structures of D 2 a, D 2 b and crossover lines on Doppler background were observed, which can provide reference signals for the frequency locking of 589nm laser.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第9期211-216,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(973计划)(批准号:2012CB921603) 国家自然科学基金(批准号:61127017,61178009,61108030,60908019,61275213,61205216) 山西省青年科学基金(批准号:2010021003-3,2012021022-1)资助的课题~~
关键词 单波长外腔共振 和频 589nm 钠原子饱和荧光谱 single-wavelength extra-cavity resonance sum-frequency 589 nm sodium atom saturated fluorescence spectrum
  • 相关文献

参考文献23

  • 1Mimoun E, Sarlo L D, Zondy J J, Dalibard J, Gerbier F 2008 Opt. Express 16 18684.
  • 2Mimoun E, Sarlo L D, Zondy J-J, Dalibard J, Gerbier F 2010 Appl. Phys. B 99 31.
  • 3Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219.
  • 4Fugate R Q, Denman C A, Hillman P D, Moore G T, Telle J M, LaRue I A D, Drummond J D Spinhirne J M 2004 Proc. of SPIE 5490 1010.
  • 5Yan Z A, Hu X, Guo S Y, Cheng Y Q 2009 Proc. of SPIE 7382 738232.
  • 6R Q Fugate 1991 Nature 353 144.
  • 7耿爱丛, 薄勇, 毕勇, 孙志培, 杨晓冬, 鲁远甫, 陈亚辉, 郭林, 王桂玲, 崔大复, 许祖彦 2006 物理学报 55 5227.
  • 8Moosmuller H, Vance J D 1997 Opt. Lett. 22 1135.
  • 9Xie S, Bo Y, Xu J, Shen Y, Wang P, Wang Z, Yang F, Peng Q, Cui D Zhang J Xu Z 2011 Appl. Phys. B 102 781.
  • 10张雷, 鲁燕华, 刘东, 唐淳, 王卫民, 高松信 2011 强激光与粒子数 23 1501.

同被引文献29

  • 1Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118.
  • 2Maker P D, Terhune R W, Nisenoff C M, Savage C 1962 Phys. Rev. Lett. 8 21.
  • 3Giordmine J 1962 Phys. Rev. Lett. 8 19.
  • 4Foltynowicz A, Ban T, Mas?wski P, Adler F, Ye J .2011. Phys. Rev. Lett. 107 233002.
  • 5Sugiyama K, Kawajiri S, Yabu N, Matsumoto K, Kitano M .2010. Appl. Opt. 49 5510.
  • 6Hollemann G, Braun B, Dorsch F, Hennig P, Heistulf P, Kutschki U, Voelckel H 2000 Proc. SPIE 3954 140.
  • 7Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y .2014. Chin. Phys. B 23 094208.
  • 8闫晓娟, 李志新, 张永智, 谭巍, 付小芳, 马维光, 张雷, 尹王保, 贾锁堂 ..2012.. 量子光学学报 18 197.
  • 9Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597.
  • 10Wen X, Han Y H, Bai J D, He J, Wang Y H, Yang B D, Wang J M .2014. Opt. Express 22 32293.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部