期刊文献+

小波算子矩阵法求分数阶积分与微分近似值

Wavelet operational matrix method for solving approximations of fractional integrals and fractional derivatives
原文传递
导出
摘要 计算一类函数分数阶积分及其Caputo分数阶微分的问题.采用Haar小波和算子矩阵相结合的方法,得到一种Haar小波分数阶积分算子矩阵,利用该算子矩阵,对给定函数做了有效的离散,充分结合Haar小波矩阵的正交性、稀疏性,将求分数阶微积分问题转化为算子矩阵的乘积,从而便于计算机求解.平稳信号和非平稳信号的数值算例验证了该方法的可行性和有效性. In this paper, Haar wavelet operational matrix of fractional order integration is given oy comommg Haar wavelet with operational matrix. The operational matrix of fractional order integration is utilized to calculate fractional integrals and Caputo fractional derivatives of a class of functions. The authors transform the problem of solving fractional integrals and derivatives into the multiplication of the operational matrix, therefore the computation becomes convenient. Finally the numerical examples show that the method presented in this paper is feasible and effective.
机构地区 燕山大学理学院
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第2期285-288,共4页 Journal of Liaoning Technical University (Natural Science)
基金 全国统计科研计划基金资助项目(2011LY064)
关键词 HAAR小波 算子矩阵 整数阶积分 分数阶积分 Caputo分数阶微分 近似值 平稳信号 非平稳信号 Haar wavelet operational matrix integer integral fractional integrals Caputo fractional derivatives approximations stationary signal non-stationary signal
  • 相关文献

参考文献10

  • 1徐长发,李国宽.实用小波分析及其应用[M].武汉:华中科技大学出版社,2001.
  • 2陈一鸣,李裕莲,周志全,耿万海.角形域上Hermite三次样条多小波自然边界元法[J].辽宁工程技术大学学报(自然科学版),2012,31(1):127-130. 被引量:4
  • 3Chen W. A speculative study of 2/3-order fractional Laplacian modeling of turbulence: Some thoughts and conjectures[J].Chaos, 2006, 12(2): 429-440.
  • 4Wang Y X, Fan Q B. The second kind Chebyshev wavelet method for solving fractional differential equations[J].Applied Mathematics and Computation, 2012(218):8 592-8 601.
  • 5Jafari H, Yousefi S A. Application of Legendre wavelets for solving fractional differential equations[J].Computers and Mathematics with Application,2011, 62 (3): 1 038-1 045.
  • 6Podlubny I.Fractional differential equations[M].New York: Academic press, 1999: 15-90.
  • 7尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 8Chen Y M, Wu Y B. Wavelet method for a class of fractional convection-diffusion equation with variable coefficients[J].Joumal of Computational Science,2010,1 (3): 146-149.
  • 9Chen C F, Hsiao C H. Haar wavelet method for solving lumped and distributed-parameter systems[J].IEE Proc. Control Theory Appl., 1997 144(1): 87-94.
  • 10Zaid Odibat. Approximations of fractional integrals and Caputo fractional derivatives[J].Applied Mathematics and Computation,2006 (1788):527-533.

二级参考文献22

  • 1余德浩.无界区域非重叠区域分解算法的离散化及其收敛性[J].计算数学,1996,18(3):328-336. 被引量:53
  • 2陈景华.Caputo分数阶反应-扩散方程的隐式差分逼近[J].厦门大学学报(自然科学版),2007,46(5):616-619. 被引量:14
  • 3余德浩.自然边界元的数学理论.,1983.
  • 4李弼程;罗建书.小波分析及其应用[M]北京:电子工业出版社,2005.
  • 5葛哲学;沙威.小波分析理论与Matlab实现[M]北京:电子工业出版社,2007.
  • 6Samko S G,Kilbas A A,Marichev O I. Fractional integrals and derivatives:theory and application applications[M].Am2 sterdam:Gordon and Breach,1993.
  • 7N'Géreékata G M. A Cauchy problem for some fractional abstract differential equations with fractional order with nonlocal conditions[J].Nonlinear Analysis,2009,(70):1873-1876.doi:10.1061/(ASCE)IR.1943-4774.0000211.
  • 8Gorenflo R,Mainardi F,Moretti D. Time fractional diffusion:a discrete random walk approach[J].Journal of Nonlinear Dynamics,2000,(03):129-143.doi:10.1007/s00203-009-0496-5.
  • 9Huang F,Liu F. The fundamental solution of the space-time fractional advection disersion equation[J].Journal of Applied Mathematics and Computing,2005,(02):339-350.
  • 10Rawashdeh E. Numerical solution of fractional integro-differential equations by collocation method[J].Applied Mathematics and Computation,2006,(07):176-186.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部