期刊文献+

基于函数空间和频域的图像特征描述方法综述

Overview of Represent Methods of Image Feature Based on Function Space and Frequency Domain
下载PDF
导出
摘要 对于一幅观察到的图像,其特征不仅包含几何结构,而且可能包含纹理或者噪声。图像特征的分类与分割在图像处理和图像识别领域中起到重要作用(如去噪、边缘检测和纹理分割)。本文从函数空间和频域变换的角度,介绍图像特征描述方法现状,并进行比较,总结各自的优缺点,最后给出图像特征目前研究的应用领域。 An observed image which is characterized not only contains the geometric structure, but also may contain noise or tex- ture. Image feature classification and segmentation play an important role in the fields of image processing and pattern recognition (such as de-noising, edge detection and texture segmentation). From the function space and frequency-domain transformation, this paper introduces the represent methods of image feature and compares it, summarizes the advantages and disadvantages of each. At the end, the application area of image feature study is given in personal opinion.
出处 《计算机与现代化》 2013年第5期80-86,94,共8页 Computer and Modernization
基金 中国高等教育学会"十二五"教育科学规划(11YB071) 江苏省"十二五"现代教育技术研究所立项课题(2011-R-19502)
关键词 图像特征 函数空间 有界变差 小波变换 曲波变换 image feature function space bounded variation wavelet transform contourlet transform
  • 相关文献

参考文献28

  • 1Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[ J]. Physica Design, 1992,60(14) : 259 -268.
  • 2Yves Meyer. Oscillating Patterns in Image Processing and in Some Nonlinear Evolution Equations [ M ]. Ecole Normale Superieure de Cachan, France, 2001.
  • 3Osher S J, Sole A, Vese L A. Image decomposition and restoration using total variation minimization and the H^-1 norm[ J ]. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2003,1 (3) : 349-370.
  • 4Stephane Mallat. A Wavelet Tour of Signal Processing (Second Edition) [ M]. Academic Press, 1999.
  • 5Candes E J. Ridgelets: Theory and Applications [ D ]. Stanford University, 1998.
  • 6Starck J L, Candes E, Donoho I). The curvelet transform for image denoising[J]. IEEE Transactions on Image Pro- cessing, 2002,11 (6) : 670-684.
  • 7Do M N, Vetteri M. The contourlet transform : An efficient directional multiresolution image representation [ J ]. IEEE Trans. on Image Processing, 2005,14(12) : 2091-2106.
  • 8Chambolle A, Lions P L. Image recovery via total variation minimization and related problems [ J ]. Numerische Math- ematik, 1997,76(2) :167-188.
  • 9Carter J. Dual Methods for Total Variation-based Image Restoration[D]. UCLA, 2001.
  • 10Chambolle A. An algorithm for total variation minimization and applications[J]. JMIV, 2004,20(1-2) :89-97.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部