期刊文献+

一种基于匹配次数的运动目标检测算法 被引量:2

A Moving Object Detection Algorithm Based on Match Time
下载PDF
导出
摘要 运动目标检测中高斯混合模型计算量大、检测实时性较差。为此,提出一种基于匹配次数的运动目标检测算法。利用高斯混合模型构建背景,统计每个像素的观测值与背景模型的匹配次数,根据匹配次数将检测场景分为静态区和动态区,对静态区的像素点进行隔帧检测,对动态区的像素点实行逐帧检测,并结合检测质量和实时性要求研究匹配次数阈值和间隔帧数。实验结果表明,当静态区面积占整帧面积的50%左右时,该算法室内和室外场景每帧图像的检测时间分别为27 ms和20 ms,检测效率较高。 The disadvantage of Gaussian Mixture Model(GMM) is that it requires large amount of computation and its poor real-time detection performance in the process of moving object detection. Aiming at this problem, a moving object detection algorithm based on match times is proposed. It constructs background by creating Gaussian models, counts the number of match times of the observed values of each pixel with the background model, according to the number of match times, divides the detected scene into two areas, such as a static area and a dynamic area. It detects every discontinuous flame for static pixels, does every frame detection for dynamic pixels, and is combined with testing quality and the real-time requirements to study the match threshold value and the interval between frames. Experimental results show that when the static zone area is about 50% for the area of the whole frame, the image detection times of this algorithm for each flame in indoor and outdoor scene are 27 ms and 20 ms, and it can improve the efficiency of detection.
出处 《计算机工程》 CAS CSCD 2013年第5期192-195,199,共5页 Computer Engineering
基金 国家自然科学基金资助项目(10926719) 河北省科技厅重点实施科技支撑计划基金资助项目(10243554D)
关键词 高斯混合模型 目标检测 匹配次数 实时检测 智能视频监控 Gaussian Mixture Model(GMM) object detection match time real-time detection intelligent video surveillance
  • 相关文献

参考文献12

  • 1Friedman N, Russell S. Image Segmentation in Video Sequences: A Probabilistic Approach[C]//Proc. of the 13th Conference on Uncertainty in Artificial Intelligence.Providence, USA: [s. n.], 1997.
  • 2Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: [s. n.], 1999.
  • 3Grimson W, Stauffer C, Romano R Tracking to Classify and Monitor Site[C]//Proc. of IEEE Conference on and Pattern Recognition. Washington D Using Adaptive Activities in a Computer Vision C., USA: IEEE Computer Society, 1998.
  • 4Shyang L D. Effective Gaussian Mixture Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832.
  • 5Zivkovic Z. Recursive Unsupervised Learning of Finite Mixture Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 651-656.
  • 6Sun Yunda, Li Ming, Wu Wei, et al. Background Model Initialization in Moving Object Detection with Shadow Elimination[C]//Proc. of the 7th International Conference on Signal Processing. Beijing, China: [s. n.]; 2004.
  • 7朱碧婷,郑世宝.基于高斯混合模型的空间域背景分离法及阴影消除法[J].中国图象图形学报,2008,13(10):1906-1909. 被引量:21
  • 8李伟,陈临强,殷伟良.基于自适应学习率的背景建模方法[J].计算机工程,2011,37(15):187-189. 被引量:9
  • 9Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction[C]//Proc. of International Conference on Pattern Recognition. Washington D. C., USA: IEEE Computer Society, 2004.
  • 10白向峰,李艾华,李喜来,李仁兵.新型背景混合高斯模型[J].中国图象图形学报,2011,16(6):983-988. 被引量:29

二级参考文献43

  • 1王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 2杨广林,孔令富.基于图像分块的背景模型构建方法[J].机器人,2007,29(1):29-34. 被引量:12
  • 3Jain R, Nagel H. On the analysis of accumulative difference pictures from image sequences of real world scenes [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, PAMI-1(2) : 206-214.
  • 4Wren C R, Azarbayejani A, Darrell T, et al: Pfinder: real-time tracking of the human body [ J ]. IEEE Transactions on PAMI, 1997, 19(7) : 780-785.
  • 5Grimson W E L, Stauffer C, Romano R, et al. Using adaptive tracking to classify and monitor activities in a site [ C ] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 1998 : 22-29.
  • 6Koller D, Weber J, Huang T, et al. Towards robust automatic traffic scene analysis in real-time [ C ] //International Conference of Pattern Recognition. Jerusalem, Israel: IEEE Computer Society, 1994:126-131.
  • 7Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach [ C ] // Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence. San Francisco, CA : Morgan Kaufmann Publishers, 1997 : 175-181.
  • 8Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ C ] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Cambridge, MA: IEEE Computer Society, 1999: 1063-1069.
  • 9Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[ C ] // Proceedings of the 6th European Conference on Computer Vision. Dublin Ireland: Springer, 2000 : 751-767.
  • 10Ren Y, Chua C S, Ho Y K. Motion detection with non-stationary background[ J]. Machine Vision and Application, 2003, 13 (5- 6) : 332-343.

共引文献64

同被引文献12

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部