期刊文献+

具有模糊收益率的投资组合选择模型

A Portfolio Selection Model with Fuzzy Returns
下载PDF
导出
摘要 为刻画金融市场中的模糊不确定性,把资产收益看作梯形模糊数,使用可能性均值作为预期收益,可能性方差作为风险,并同时考虑最大化收益和最小化风险,建立了一种可能性均值-方差投资组合模型.考虑到模型的非线性和多目标性,利用包含精英主义操作和变异操作的多目标遗传算法对模型进行求解.最后,使用沪深股票市场中的部分股票数据对模型进行了实证分析,结果表明该方法具有较好的应用价值. In order to describe the uncertainty of the returns on a given portfolio, the portfolio selection problems were investigated by using possibilitic theory. Firstly, the expected returns and risk were given by using probabilistic mean and variances, respectively. A portfolio optimization problem whose object is maximizing the return on an invest- ment and minimizing risk was built. Secondly, the non-liuearity and multi-objective of the model was considered and solved by genetic algorithm which incorporated the elite and mutation operations. Finally, the proposed scheme was verified by an empirical analysis of the model with a data set from Shanghai and Shenzhen stock market, and the results show that the method is effective.
作者 李蕊
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2013年第2期169-172,共4页 Journal of Xinyang Normal University(Natural Science Edition)
关键词 投资组合 模糊数 遗传算法 portfolio fuzzy number genetic algorithm
  • 相关文献

参考文献9

  • 1Markowitz H M. Portfolio selection[ J]. Finance,1952 ’7 :77-91 .
  • 2Sharp W. A simpliefied model for portfolio analysis [ J ]. Management Science, 1963 ,9 : 277-293.
  • 3Sharp W. Capital assets prices : a theory of market equilibrium under conditions of risk [ J ]. The Journal of Finance, 1964,19 :425-442.
  • 4Mao J C T. Models of capital budgeting e-v vs e-s[ J]. Journal of Financial and Quantitative Analysis,1970,5 : 657-675.
  • 5Swalm H 0. Ulility theoy insights into risk taking J]. Harvard Nusiness Review, 1966,44 : 123-136.
  • 6Konno H, Pliska S R, Suzuki K. Optimal portfolios with asymptotic criteria[ J] . Annals of Operations Research, 1993 ,45 : 187-204.
  • 7Zhang W G, Nie Z K. On possibilistic variance offuzzy numbers[ J]. Lect Notes Artif Intell,2003,2639 :398-402.
  • 8Carlsson C, Fuller R. On possibilistic mean value and variance of fuzzy numbers [ J ]. Fuzzy Sets Syst,2001,122 :315-326.
  • 9Sakawa M. Genetic algorithms and fuzzy multiobjective optimization[M]. Boston : Kluwer ,2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部