期刊文献+

认知网络中基于网络辅助的速率控制方法 被引量:2

Network-assisted optimal rate control methods in cognitive networks
下载PDF
导出
摘要 面向多速率业务的认知网络,为了克服其动态性并实现速率控制的自主性,在改进IEEE 1900.4系统架构的基础上提出了速率控制框架。探讨不同层面不同尺度的速率控制方案。重点研究终端侧短期实时速率控制的问题。首先,基于非合作博弈提出分布式自主速率选择方法;进而,基于合作博弈提出基于网络辅助的中心式速率分配方法。仿真结果表明,后者较前者获得近60%的效能和一定的公平性改善,同时也验证了定价函数设计能够有效地改进公平性。 Orienting the multi-rate cognitive networks, overcoming the typical characteristics of dynamics to implement the autonomy and rationality of rate control, first the rate control framework based on the presented improved IEEE 1900.4 architecture was proposed. Meanwhile, different scaled rate control schemes on different levels were investigated. Then, the real-time rate control problem on the terminal we concentrate on. Most importantly, both the distributed rate selection of TRM towards RNRM and the centralized rate allocation of RNRM to TRM were investigated. Simulation results show that the latter can achieve 60% utility and certain fairness improvements, in addition, the rationality and fairness guaranteed by the newly-built pricing function is verified.
出处 《通信学报》 EI CSCD 北大核心 2013年第5期126-135,共10页 Journal on Communications
基金 国家自然科学基金资助项目(61231008 61201139 60972048) 国家重点基础研究发展计划("973"计划)基金资助项目(2009CB320404) 陕西省自然科学基金资助项目(2012JQ8012) 陕西省科技研究与发展计划基金资助项目(2011KJXX-40) 中央高校基本业务费基金资助项目(K5051201033) 综合业务数字网国家重点实验室基金资助项目(ISN02080001) 111基地专项基金资助项目(B08038) 长江学者创新团队基金资助项目 国家科技重大专项基金资助项目(2012ZX03003005-005)~~
关键词 认知网络 速率控制 博弈 IEEE 1900 4 cognitive networks rate control game theory IEEE 1900.4
  • 相关文献

参考文献18

  • 1THOMAS R W, DASILVA L A, MACKENZIE A B. Cognitive net- works[A]. Proceedings of the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks[C]. Baltimore, MD, USA, 2005.1-8.
  • 2FORTUNA C, MOHORCIC M. Trends in the development of commu- nication networks: cognitive networks[J]. Computer Networks, 2008, 53(9): 1354-1376.
  • 3KELLY F, MAULLOO A, TAN D. Rate control for communication networks: shadow prices, proportional fairness and stability[J]. Journal of the Operational Research Society, 1998, 49(3):237-252.
  • 4YI Y, CHIANG M. Stochastic network utility maximization[J]. Euro- pean Transactions on Telecommunications, 2008, 1 (1): 1-20.
  • 5ALTMAN E, BAAR T. Multi-user rate-based flow control[J]. IEEE Transactions on Communications, 1998, 46(7):940-949.
  • 6WANG B, WU Y, RAY LIU K J. Game theory for cognitive radio net- works: a tutorial survey[J]. Computer Networks, 2010, 54(14):2537-2561.
  • 7NEEL J, REED J, GILLES R G. Convergence for cognitive radio networks[A]. Proceedings of Wireless Communications and Network- ing Conference[C]. Atlanta, Georgia, USA, 2004. 2250-2255.
  • 8TSAMIS D, ALPCAN T, BAMBOS N. Game theoretic rate control for mobile devices[A]. 2009 International Conference on Game The- ory for Networks[C]. Istanbul, Turkey, 2009. 646-652.
  • 9ZHOU P, YUAN W, LIU W, et al. Joint power and rate con'ol in cog- nitive r0dio networks: a game-theoretic approach[A]. IEEE International Conference on Communications[C]. Beijing, China, 2008. 3296-3301.
  • 10LI H Y, GAI Y B, Optimal power control game algorithm for cogni- tive radio networks with multiple interference temperature limits[A]. IEEE 67th Vehicular Technology Conference[C]. Lalgary,Canada, 2008. 1554-1558.

同被引文献20

  • 1Wang B, Wu Y, Liu K J. Game theory for cognitive radio networks: an overview. Comput Networks, 2010, 54: 2537-2561.
  • 2Saraydar C U, Mandayam N B, Goodman D. Efficient power control via pricing in wireless data networks. IEEE Trans Commun, 2002, 50:291-303.
  • 3Kang X, Zhang R, Motani M. Price-based resource allocation for spectrum-sharing femtocell networks: a stackelberg game approach. IEEE J Sel Area Commun, 2012, 30:538-549.
  • 4Jiang L, He C. Optimal price-based power control algorithm in cognitive radio networks. IEEE Trans Wirel Commun, 2014, 13:5909-5920.
  • 5Xie X, Yang H, Vasilakos A V, et al. Fair power control using game theory with pricing scheme in cognitive radio networks. J Commun Netw, 2014, 16:183-192.
  • 6Zhou P, Yuan W, Liu W, et al. Joint power and rate control in cognitive radio networks: a game-theoretical approach. In: Proceedings of IEEE International Conference on Communications (ICC), Beijing, 2008. 3296-3301.
  • 7Shashika Manosha K B, Rajatheva N. Joint power and rate control for spectrum underlay in cognitive radio networks with a novel pricing scheme. In: Proceedings of IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), Ottawa, 2010. 1-5.
  • 8Musku M R, Chronopoulos A T, Popescu D C, et al. A game-theoretic approach to joint rate and power control for uplink CDMA communications. IEEE Trans Commun, 2010, 58:923-932.
  • 9Javan M R, Sharafat A R. Efficient and distributed SINR-based joint resource allocation and base station assignment in wireless CDMA networks. IEEE Trans Commun, 2011, 59:3388-3399.
  • 10Javan M R, Sharafat A R. Distributed joint resource allocation in primary and cognitive wireless networks. IEEE Trans Commun, 2013, 61:1708-1719.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部