期刊文献+

非傅里叶热弹性的时域间断迦辽金有限元方法 被引量:5

TIME DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR GENERALIZED THERMO-ELASTIC WAVE OF NON-FOURIER EFFECTS
下载PDF
导出
摘要 基于Lord--Shulman非傅里叶热弹性模型,提出了采用修正的时域间断迦辽金有限元方法(time discontin-uous Galerkin finite element method,DGFEM)求解方法.DGFEM对温度场、位移场基本未知向量及其时间导数向量在时域中分别插值;在最终的求解公式中,引入了人工阻尼.数值结果显示所发展的DGFEM较好地捕捉了波的间断并消除了热冲击作用下虚假的数值振荡,能够良好地模拟热弹性问题并具有较高的精度. In the paper, we present a modified time discontinuous Galerkin finite element method (DGFEM) for the solution of generalized thermo-elastic coupled problems based on well-known non-Fourier Lord-Shulman theory. The general temperature and displacement fields with their time derivatives are interpolated in time domain, respectively. In order to filter out the spurious wave-front oscillations, an artificial damping scheme is implementation in the final finite element formula. Numerical results show that the present modified DGFEM proposes the good abilities and provides much more accurate solutions for ger^eralized thermo-elastic coupled behavior. It can effectively capture the discontinuities at the wave front and filter out the effects of spurious numerical oscillation induced by thermal shock.
出处 《力学学报》 EI CSCD 北大核心 2013年第3期447-450,共4页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家重点基础研究发展规划(2011CB013705) 国家重大专项(2011ZX05026-002-02) 创新研究群体研究基金(50921001)资助项目~~
关键词 广义热弹性 时域间断迦辽金有限元方法 热冲击 数值振荡 generalized thermo-elastic theory, DGFEM, thermal shock, numerical oscillation
  • 相关文献

参考文献9

  • 1田晓耕,沈亚鹏.广义热弹性问题研究进展[J].力学进展,2012,42(1):18-28. 被引量:27
  • 2蒋方明,刘登瀛.非傅立叶导热的最新研究进展[J].力学进展,2002,32(1):128-140. 被引量:26
  • 3Tamma KK, Namburu RR. Computational approaches with appli- cations to nonclassical and classical thermo-mechanical problems. Applied Mechanics Reviews, 1997, 50(9): 514-551.
  • 4Lord H, Shulman Y. A generalized dynamical theory of thermo- elasticity. Journal of the Mechanics and Physics of Solids, 1967, 15:299-309.
  • 5Green AE, Lindsay KE. Thermoelasticity. Journal of Elasticity, 1972.2:1-7.
  • 6Green AE, Naghdi PM. Thermoelasticity without energy dissipa- tion. Journal of Elasticity, 1993, 31:189-208.
  • 7Strunin DV, Melnik RVN, Roberts AJ. Coupled thermomechanical waves in hyperbolic thermoelasticity. Journal of Thermal Stresses, 2001, 24:121-140.
  • 8Prevost JH, Tao D. Finite element analysis of dynamic coupled ther- moelasticity problems with relaxation times. Journal of Applied Me- chanics, 1983, 50:817-822.
  • 9Wu WH, Li XK. Application of the time discontinuous Galerkin fi- nite element method to heat wave simulation. International Journal of Heat and Mass Transfer, 2006, 49 (9- l 0): 1679-1684.

二级参考文献22

共引文献50

同被引文献37

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部