期刊文献+

基于边介数的信息系统网络节点重要性评估方法 被引量:10

Evaluation Method for Node Importance of Information System Networks Based on Edge-betweenness
原文传递
导出
摘要 网络中节点的重要性评估是复杂网络研究中的一项重要内容。针对已有复杂网络节点重要性评估方法中片面强调节点的度而忽略了边对与之相连节点的支撑作用的缺陷,构建了基于边介数的信息系统网络节点重要性评估的数学模型。该模型在充分考虑节点度的基础上,为体现边对其端节点的支撑作用,引入边介数概念,形成了节点度和边介数共同作用下的评估数学模型。以某信息系统网络为例进行了仿真验证。仿真结果表明:考虑边的支撑作用后评估结果更切合实际,进一步印证了构建的评估模型对于评估信息系统网络节点重要性的有效性。 It is an important content to evaluate the importance of network nodes in the research of complex network. A mathematical model for evaluating the key nodes of information system network is constructed in the light of the defects that node degree is unevenly emphasized and supporting function of edge to its correspondent nodes is ignored in the importance evaluation of complex network nodes. The concept of edge-betweenness is introduced in the person of the supporting function of edge to its correspondent nodes based on node degree, the mathematical model reflecting the joint function of node degree and edge-betweenness is formed. The simulation results by means of certain information system network demonstrate the effectiveness of the model for evaluating the importance of complex network nodes.
出处 《科技导报》 CAS CSCD 北大核心 2013年第14期53-55,共3页 Science & Technology Review
基金 国家自然科学基金项目(61174162)
关键词 信息系统 复杂网络 关键节点 边介数 information system complex network critical node edge-betweenness
  • 相关文献

参考文献4

二级参考文献15

  • 1王林,张婧婧.复杂网络的中心化[J].复杂系统与复杂性科学,2006,3(1):13-20. 被引量:61
  • 2Sturdivan L. A Mathematic Model Of Penetration Of Chunky Projectiles In A Gelatin Tissue Simulant[R]. 1978, ADAU63525.
  • 3Eisler D, Chatterjee A, Burghart G. Casualty Assessments of Penetrating Wounds From Ballistic Trauma[R]. 2001, AD20010719041.
  • 4William B, Beverly. A Human Ballistic Mortality Model[R]. 1978, ADAO58947.
  • 5Gomez D, Gonzalez-Aranguena E, Manuel C. Centrality and power in social network: A game theoretic approach [J]. Mathematical Social Sciences, 2003, 46(1): 27-54.
  • 6Wasserman S, Faust K. Social networks analysis: Methods and applications[M]. Cambridge: Cambridge University Press, 1994.
  • 7Hage P, Harary F. Eccentricity and centrality in networks [J]. Social Networks, 1995, 17(1): 57-63.
  • 8Scott J. Social network analysis: A handbook [M]. 2nd ed. London: Sage Publications, 2000.
  • 9Estrada E, Rodrfguez-Vel6zquez J A. Subgraph centrali.ty in complex networks[J]. Phys Rev E, 2005, 71(55): 56-103.
  • 10Latora V, Marchiori M. A measure of centrality based on networks efficiency [J]. New JPhys, 2007, 9(6): 188.

共引文献53

同被引文献98

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部