期刊文献+

压缩感知在医学超声成像中的仿真应用研究 被引量:8

Simulation of the application of compressive sensing to medical ultrasound imaging
下载PDF
导出
摘要 为了解决医学超声成像系统中面临的采样率高,数据量大的问题,提出将压缩感知理论方法用于医学超声成像。首先建立了超声信号在时域的稀疏表达模型,然后利用模拟信息转换器对信号进行稀疏采样,最后使用最优化方法完成回波信号重建,利用合成发射孔径方式完成最终超声成像。为了验证算法的有效性,利用Field II对点目标以及复杂组织目标进行了仿真实验,在均方误差、分辨率、对比度以及成像质量上与常规成像结果对比分析。结果表明,采用1/2奈奎斯特采样频率,以30%原始数据所完成的成像仍然可保证良好的图像质量。采用压缩感知理论可以大幅度降低医学超声系统的采样率及总数据量。 In order to lower the sampling rate and to reduce the huge amount of data in imaging of synthetic transmitting aperture, a medical ultrasound imaging method based on compressive sensing is presented. Firstly, the sparsity of ul- trasonic echo signal in time-domain is verified. Then, the echo signal is sparely sampled by an Analog-to-Information converter. Finally, the echo signal is reconstructed by solving an optimization problem. Experiments for point target and complex tissue target are used to verify the proposed method. The RMS errors, resolutions, contrasts and image qualities of the reconstruct image and the original image are compared. The results show that ultrasound imaging can be im- plemented with a sampling rate below Nyquist frequency and a data amount of only 30% without reducing the quality of image.
出处 《声学技术》 CSCD 2013年第2期106-110,共5页 Technical Acoustics
基金 中国科学院知识创新工程重要方向资助项目(KGCX2-YW-915)
关键词 超声成像 压缩感知 模拟信息转换 合成孔径 ultrasound imaging compressive sensing analog to information synthetic aperture imaging
  • 相关文献

参考文献13

  • 1Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on, 2006, 52(4): 1289-1306.
  • 2Candes E J, Romberg J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. Information Theory, IEEE Transactions on, 2006,52(2): 489-509.
  • 3Wang G, Bresler Y, Ntziachristos Y. Guest editorial compressive sensing for biomedical imaging[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1013-1016.
  • 4Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
  • 5焦鹏飞,李亮,赵骥.压缩感知在医学图像重建中的最新进展[J].CT理论与应用研究(中英文),2012,21(1):133-147. 被引量:19
  • 6Tur R, Eldar Y. C, Friedman Z, Innovation rate sampling of pulse streams with application to ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1827-1842.
  • 7Kirolos S, Laska J, Wakin M, et al. Analog-to-information conversion via random demodulation[C]// Design, Applications, Integration and Software, 2006, 71-74.
  • 8Shi G. UWB echo signal detection with ultra-low rate sampling based on compressed sensing. Circuits and Systems II: Express Briefs. IEEE Transactions on. 2008. 55(4): 379-383.
  • 9谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报,2010,32(5):1234-1238. 被引量:49
  • 10余锦华,汪源源.医学超声成像的模拟研究[J].声学技术,2011,30(1):33-40. 被引量:11

二级参考文献67

  • 1张仕刚,谢耀钦,包尚联.医学影像物理学科的现状和未来[J].物理,2004,33(10):753-758. 被引量:11
  • 2Tsaig Y and Donoho D L.Extensions of compressed sensing[J].Signal Processing,2006,86(3):549-571.
  • 3Candes E J,Romberg J,and Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 4Baraniuk R and Steeghs P.Compressive radar imaging[C].IEEE Radar Conference,Boston,MA,USA,Apr.17-20,2007:128-133.
  • 5Herman M and Strohmer T.Compressed sensing radar[C].IEEE International Conference on Acoustics,Speech and Signal Processing,Las Vegas,NV,USA,Mar.30-Apr.4,2008:1509-1512.
  • 6Yoon Y S and Amin M G.Compressed sensing technique for high-resolution radar imaging[J].Proceedings of the SPIE,2008,Vol.6968:69681A-69681A-10.
  • 7Varshney K R,Cetin M,and Fisher J W,et al..Sparse representation in structured dictionaries with application to synthetic aperture radar[J].IEEE Transactions on Signal Processing,2008,56(8):3548-3561.
  • 8Potter L C,Schniter P,and Ziniel J.Sparse reconstruction for radar[J].Proceedings of the SPIE,2008,Vol.6970:697003-697003-15.
  • 9Tello M,Lopez-Dekker P,and Mallorqui J J.A novel strategy for radar imaging based on compressive sensing[C].International Geoscience and Remote Sensing Symposium,Boston,MA,USA,Jul.7-11,2008,Vol.2:II-213-II-216.
  • 10Gurbuz A C,Mcclellan J H,and Scott W R Jr.GPR imaging using compressed measurements[C].International Geoscience and Remote Sensing Symposium,International Geoscience and Remote Sensing Symposium,Boston,MA,USA,Jul.7-11,2008,Vol.2:II-13-II-16.

共引文献77

同被引文献79

  • 1王超.基于压缩感知的贪婪迭代重构算法[J].数据采集与处理,2012,27(S2):298-303. 被引量:12
  • 2汤渭霖.声呐目标回波的亮点模型[J].声学学报,1994,19(2):92-100. 被引量:137
  • 3Donoho D. Compressed Densing[ J]. IEEE Transactions on Information Theory,2006,52(4) :1289-1306.
  • 4CandOs E,Romberg J, Tao T. Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Intbrmation[ J ]. IEEE Transactions on Information Theory,2006,52 (2) :489-509.
  • 5Duarte M F, Davenport M A, Takhar D, et al. Single-Pixel Imaging Via Compressive Sampling [ J]. IEEE Signal Processing Magazine, 2008,25 ( 2 ) : 83-91.
  • 6Bhattacharya S, Blumensath T, Mulagrew B, et al. Fast Encoding of Synthetic Aperture Radar Raw Data Using Compressed Sensing[ C ]//Proceedings of Statistical Signal Processing. Washington D C:IEEE,2007:448-452.
  • 7Candes E J ,Tao T. Decoding by Linear Programming [ J]. IEEE Transaction on Information Theory,2005,51 (12) :4203-4215.
  • 8E CandOs,J Romberg. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions [ J]. Found Comput Math,2006,6 ( 2 ) : 227-254.
  • 9Cand~s E ,Wakin M B. An Introduction to Compressive Sampling[ J ]. IEEE Signal Processing Magazine ,2008,25 (3) :21-30.
  • 10Gemmeke J F, Cranen B. Using Sparse Representations for Missing Data Imputation in Noise Robust Speech Recognition [ M ]. Lausanne, Switzerland, European Signal Processing Conf( EUSIPCO ) , 2008 : 987-991.

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部