期刊文献+

基于自然激励技术的低频振荡模态参数识别 被引量:3

Low Frequency Oscillation Modal Parameter Identification Based on Natural Excitation Technique
原文传递
导出
摘要 低频振荡是威胁电网安全稳定运行的一个重要因素。传统的基于测量信号的低频振荡模态参数辨识方法难以在系统未发生明显振荡时准确的检测模态参数。提出了一种利用系统正常运行时的白噪声响应识别系统模态参数的方法。首先用自然激励技术从白噪声响应间接获取系统的脉冲响应,再用HHT法对脉冲响应函数进行分析,得到系统各阶模态的频率、阻尼比等模态参数。通过对四机两区系统的仿真分析和实际电网数据的计算验证了方法的有效性。 Low frequency oscillation has become one of the most serious problems threatening power system security. Conventional measurement-based modal parameter identification methods cannot work effectively when there is no ob- vious oscillation. A method using the white noise response of the system under normal operation to identify modal pa- rameters is proposed. The impulse response of the system is first obtained from the white noise responses u^ing the natural excitation technique, then the impulse response is analyzed with HHT method to obtain modal parameters in- cluding frequency and damping ratio. The validity of the method is verified with the simulation of four-machine two- area system and the analysis of practical power system measurements.
出处 《华东电力》 北大核心 2013年第5期991-994,共4页 East China Electric Power
基金 国家自然科学基金(51007043) 国家电网公司大电网重大专项资助项目(SGCC-MPL017-2012) 三峡大学硕士学位论文培优基金(2012PY33)~~
关键词 低频振荡辨识模态参数辨识 白噪声 自然激励技术 希尔伯特黄变换 low frequency oscillation identification modal parameter white noise natural excitation technique HHT
  • 相关文献

参考文献6

二级参考文献28

  • 1王刚,姚谦峰.环境激励下框架结构体系的模态识别方法研究[J].工业建筑,2004,34(12):45-47. 被引量:7
  • 2纪晓东,钱稼茹,徐龙河.两层钢支撑框架模型损伤定位试验[J].工程力学,2007,24(1):62-66. 被引量:3
  • 3James G H, Came T G, Lauffer J P. The Natural Excitation Technique for Modal Parameter Extraction from Operating Structures[ J ]. Modal Analysis; Int J Analytical and Experimental Modal Analysis, 1995, 10 ( 4 ) : 260- 277.
  • 4Los Alamos National Laboratory Website: http://www. lanl. gov/projects/damage_id/index. htm.
  • 5Doebling S W, Farrar C R, Prime M B, Shevitz D W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review [R]. Los Alamos National Laboratory, Los Alamos, New Mexico, 1996.
  • 6Huang N E, Shen Z, Long S R. The empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903-995.
  • 7Feldman M. Non-linear system vibration analysis using Hilbert transform-I. Free vibration analysis method 'Freevib' [J]. Mechanical Systems and Signal Processing, 1994, 8(2): 119- 127.
  • 8Ibrahim S R. Random decrement technique for modal identification of structures [J]. Journal of Spacecraft and Rockets, 1977, 14(11): 696-700.
  • 9James G H, Carrie T G, Lauffer J P. The natural excitation technique (NEXT) for modal parameter extraction from operating wind turbines[R]. Sandia National Laboratories, Albuquerque, New Mexico, 1995.
  • 10Caicedo J M, Dyke S J, Johnson E A. Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE Benchmark problem: Simulated data [J]. Journal of Engineering Mechanics, 2004, 130(1): 49-60.

共引文献31

同被引文献41

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部