期刊文献+

THE GROWTH ORDER OF SOLUTIONS OF SYSTEMS OF COMPLEX DIFFERENCE EQUATIONS 被引量:17

THE GROWTH ORDER OF SOLUTIONS OF SYSTEMS OF COMPLEX DIFFERENCE EQUATIONS
下载PDF
导出
摘要 Using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron theory of entire functions, we investigate the problem of growth order of solutions of a type of systems of difference equations, and extend some results of the growth order of solutions of systems of differential equations to systems of difference equations. Using Nevanlinna theory of the value distribution of meromorphic functions and Wiman-Valiron theory of entire functions, we investigate the problem of growth order of solutions of a type of systems of difference equations, and extend some results of the growth order of solutions of systems of differential equations to systems of difference equations.
作者 高凌云
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第3期814-820,共7页 数学物理学报(B辑英文版)
基金 supported by the Natural Science Foundation of China (10471065) the Natural Science Foundation of Guangdong Province (04010474)
关键词 Growth order difference equations entire function Growth order difference equations entire function
  • 相关文献

二级参考文献25

  • 1Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964.
  • 2Bank S, Kaufman R. On meromorphic solutions of first-order differential equations. Comment Math Helv, 1976, 51:289-299.
  • 3Barsegian G. Estimates of derivatives of meromorphic functions on set of a-points. J London Math Soc, 1986, 34(2): 534 -540.
  • 4He Yuzan, Xiao Xuizhi. Algebroid functions and ordinary differential equation (in Chinese). Beijing: Science Press, 1988.
  • 5Barsegian G. On a method of study of algebraic differential equations. Bull Hong Kong Math Soc, 1998, 2:159-164.
  • 6Gol'dberg A A. On single-wlued solutions of algebraic differential equations. Ukrain Mat Zh, 1956, 8: 254 261.
  • 7Hayman W K.The growth of solutions of algebraic differential equations. Rend Mat Acc Lincei, 1996, 7: 67-73.
  • 8Bergweiler W. On a theorem of Gol'dberg concerning meromorphic solutions of algebraic differential equa- tions. Complex Variables, 1998, 37:93 -96.
  • 9Frank G, Wang Yuefei. On the meromorphic solutions of algebraic differential equations. Analysis, 1998, 18:49-54.
  • 10Zalcman L. Normal families: New perspectives. Bull Amer Math Soc, 1998, 35:215-230.

共引文献25

同被引文献36

  • 1高凌云.ON THE GROWTH OF SOLUTIONS OF HIGHER-ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS[J].Acta Mathematica Scientia,2002,22(4):459-465. 被引量:6
  • 2Ling-yun Gao.On the Growth of Components of Meromorphic Solutions of Systems of Complex Differential Equations[J].Acta Mathematicae Applicatae Sinica,2005,21(3):499-504. 被引量:10
  • 3Risto Korhonen.A new Clunie type theorem for difference polynomials[J].Journal of Difference Equations and Applications.2011(3)
  • 4Yik-Man Chiang,Shao-Ji Feng.On the Nevanlinna characteristic of f(z+η) and?difference equations in the complex plane[J].The Ramanujan Journal.2008(1)
  • 5Ilpo Laine,Jarkko Rieppo,Heli Silvennoinen.Remarks on Complex Difference Equations[J].Computational Methods and Function Theory.2005(1)
  • 6R.G. Halburd,R.J. Korhonen.Difference analogue of the Lemma on the Logarithmic Derivative with applications to difference equations[J].Journal of Mathematical Analysis and Applications.2005(2)
  • 7Janne Heittokangas,Risto Korhonen,Ilpo Laine,Jarkko Rieppo,Kazuya Tohge.Complex Difference Equations of Malmquist Type[J].Computational Methods and Function Theory.2001(1)
  • 8Yik-Man Chiang,Shao-Ji Feng.On the Nevanlinna characteristic of f ( z + η ) and difference equations in the complex plane[J]. The Ramanujan Journal . 2008 (1)
  • 9Chung-Chun Yang,Ilpo Laine.On analogies between nonlinear difference and differential equations. Proc. Japan Acad., Ser. A . 2010
  • 10R.G. Halburd,R.J. Korhonen.??Difference analogue of the Lemma on the Logarithmic Derivative with applications to difference equations(J)Journal of Mathematical Analysis and Applications . 2005 (2)

引证文献17

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部