期刊文献+

多模复杂网络模型的形状特征提取方法 被引量:3

Shape Feature Extraction Using Multi-Model Complex Network Model
下载PDF
导出
摘要 物体形状的特征提取是图像检索与识别中的重要研究内容。考虑到物体形状的多变性,给出了一种基于多模复杂网络模型的形状特征提取方法。首先,以形状边界轮廓点作为节点,利用节点之间的欧氏和内部距离作为连接顶点之间边的权值构建初始网络模型;然后,分别基于欧氏距离和内部距离对初始网络进行演化;最后,从子网络中提取特征,并进一步用于形状描述。检索与分类实验表明,所提方法相比于传统的单一模态下的复杂网络特征提取方法具有更强的鲁棒性。 Shape feature extraction is important in content based image recognition. Considering the variance of shape, this paper presents a new shape feature extraction method based on multi-model complex network. Firstly, an initial complex network is constructed with nodes corresponding to the boundary points and edges allocated with Euclidean and inner distances as weights existing between each node pairs. Then, this initial network is evolved based on Euclidean and inner distances, respectively. At last, some features are extracted from these sub-networks and further provided for the shape. Experimental results on both object classification and retrieval show that the proposed method is more robust compared with the single-model complex network model.
出处 《计算机科学与探索》 CSCD 2013年第6期570-576,共7页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61202228 61073116~~
关键词 特征提取 复杂网络 内部距离 动态演化 feature extraction complex network inner distance dynamic evolution
  • 相关文献

参考文献4

二级参考文献56

  • 1张恒博,欧宗瑛.一种基于色彩和灰度直方图的图像检索方法[J].计算机工程,2004,30(10):20-22. 被引量:40
  • 2王钲旋,李海军,周春光.高维空间中用计算街区和棋盘距离的线性组合代替计算欧氏距离[J].小型微型计算机系统,2004,25(12):2120-2125. 被引量:6
  • 3齐怀峰,韩昧华,接标,杨秀国.基于角的形状匹配[J].计算机技术与发展,2006,16(8):189-191. 被引量:1
  • 4任平红,陈矗.基于改进的边缘直方图的图像检索方法[J].计算机技术与发展,2007,17(8):183-186. 被引量:13
  • 5D S Zhang. Image Retrieval Based on Shape[D]. Monash University, Australia, March, 2002.
  • 6G J Lu, A Sajjanhar. Region-based shape representation and similarity measure suitable for content-based image rerieval IJ] .Multimedia Syst, 1999,7(2) : 165 - 174.
  • 7A Goshtasby. Description and discrimination of planar shapes using shape matrices[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985,7(1) : 738 - 743.
  • 8M Sonka, V Hlavac, R Boyle. Image Processing, Analysis and Machine Vision[ M]. Chapman&Hall, London, UK, NJ, 1993. 193 - 242.
  • 9H Blum. A transformation for extracting new descriptors of shape [A]. Models for the Perception of Speech and Visual Forms, Cambridge[C]. MA: MIT Press, 1967.362 - 380.
  • 10S C Zhu, A L Yuille. FORMS: A flexible object recognition and modeling system[J].International Journal on Computer Vision, 1996,20(3) : 187 - 212.

共引文献36

同被引文献12

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部