期刊文献+

强噪声干扰下的对数极坐标空间边缘提取算法

Algorithm of edge extraction in intensively noisy log-polar space
下载PDF
导出
摘要 准确提取对数极坐标空间的目标边缘信息是对数极坐标变换视觉不变性获得成功应用的前提和关键。由于传统的边缘提取算法无法满足强噪声干扰下的单像素精度要求,在主动轮廓模型和水平集方法的基础上,设计了一种独特的边缘提取算法。经融合Canny算子的水平集方法全局降噪,利用能量驱动的主动轮廓模型逐次演化逼近,提取可能的边缘曲线,通过改进型跟踪寻迹剔除虚假信息,即可得到最终的目标边缘。实验表明,该算法行之有效,边缘提取特征相似度达96%以上。 Accurate extraction of a target' s edge in a log-polar space is a precondition and key point to successfully apply the visual invariance of the log-polar transformation. Since it is impossible for traditional algorithms to extract the single-pixel edge in an intensively noisy environment, a unique edge extraction algorithm on the basis of active contour model and level set method was designed. After noise removal on the whole via Canny operator based level set method, the energy-driving active contour model was used to iteratively approach the potential edges. By clearing out false edges with an improved tracing way, the true target' s edge was extracted finally. The experimental results demonstrate the effective performance of the proposed algorithm with the edge feature similarity up to 96%.
出处 《计算机应用》 CSCD 北大核心 2013年第6期1695-1696,1700,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60872097) 中航工业计算所创新基金资助项目(CXXM12072-16)
关键词 边缘提取 对数极坐标空间 主动轮廓模型 水平集方法 跟踪寻迹 edge extraction log-polar space active contour model level set method tracing way
  • 相关文献

参考文献10

  • 1SCHWARTZ E L. Spatial mapping in the primate sensory projec- tion: analytic structure and relevance to perception[ J]. Biological Cybernetics, 1977, 25(4) : 181 - 194.
  • 2SNOWDEN R, THOMPSON P, TROSCIANKO T. Basic vision: An introduction to visual perception [ M]. Oxford: Oxford University Press, 2006.
  • 3GONZALESRC,WOODSRE.数字图像处理[M].2版.阮秋琦,阮字智,译.北京:电子工业出版社,2007.
  • 4KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4) : 321 - 331.
  • 5MUMFORD D, SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[ J]. Communi- cations on Pure and Applied Mathematics, 1989, 42(5): 577 - 685.
  • 6CHAN T, VESE L. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266 -277.
  • 7HEYDARIAN M, NOSEWORTHY M D, KAMATH M V, et al. Optimizing the level set algorithm for detecting object edges in MR and CT images [ J]. IEEE Transactions on Nuclear Science, 2009, 56(1): 156-166.
  • 8文鹏程,王向军,卫红.Modified level set method with Canny operator for image noise removal[J].Chinese Optics Letters,2010,8(12):1127-1130. 被引量:3
  • 9MALLADI R, SETHIAN J A. A unified approach to noise remov- al, image enhancement, and shape recovery [ J]. IEEE Transac- tions on Image Processing, 1996, 5(11) : 1154 - 1168.
  • 10KIM K S, KIM P K, SONG J J, et al. Analyzing blood cell image to distinguish its abnormalities[ C]// Proceedings of the 8th ACM International Multimedia Conference. New York: ACM, 2000: 395 - 397.

二级参考文献12

  • 1S. Osher and J. A. Sethian, J. Comput. Phys. 79,12 (1988).
  • 2J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edn.) (Cambridge University Press, Cambridge, 1999).
  • 3R. Malladi and J. A. Sethian, IEEE Trans. Image Process. 5, 1154 (1996).
  • 4D. Gil and P. Radeva, IEEE Trans. Image Process. 13,1444 (2004).
  • 5C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, IEEE Trans. Image Process. 17, 1940 (2008).
  • 6J. Bai and Q. Chen, Acta Opt. Sin. (in Chinese) 28, 866 (2008).
  • 7X. zhang and X. Jing, Acta Opt. Sin. (in Chinese) 30, 70 (2010).
  • 8J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. 8, 679 (1986).
  • 9M. Heydarian, M. D. Noseworthy, M. V. Kamath, C. Boylan, and W. F. S. Poehlman, IEEE Trans. Nucl. Sci. 56, 156 (2009).
  • 10R. Xia, W. Liu, J. Zhao, and L. Li, in Proceedings of IEEE Int. Conference Automation and Logistics 411 (2007).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部