期刊文献+

不含相邻4-圈的1-平面图边染色 被引量:1

Edge colorings of 1-planar graphs without adjacent 4-cycles
下载PDF
导出
摘要 利用权转移方法证明最大度为9且不含相邻4-圈的1-平面图是9-边可染的. It was proved that every 1-planar graph of maximum degree 9 without adjacent 4-cycles could be 9-edge-colorable by the discharging method.
出处 《湖北大学学报(自然科学版)》 CAS 2013年第2期209-213,共5页 Journal of Hubei University:Natural Science
基金 国家自然科学基金(61104111 11001265) 中央高校基本科研业务费专项基金(2010LKSX06)资助
关键词 1-平面图 边染色 权转移 1-planar graph edge coloring discharging
  • 相关文献

参考文献12

  • 1Douglas B W. Introduction to graph theory[M]. Delhi.- Pearson Education,2001.
  • 2Vizing V G. On an estimate of the chromatic index of a p-graph[J]. Metody Diskret Analiz, 1964(3) .-25-30.
  • 3Vizing V G. Critical graphs with given chromatic class[J]. Metody Diskret Analiz, 1965 (5) .. 9-17.
  • 4Zhang L M. Every planar with maximum degree 7 is of class l[J]. Graphs and Combinatorics, 2000,16 (4) .. 467-495.
  • 5Sanders D P, Zhao Y. Planar graphs of maximum degree seven are class I [J]. Journal of Combinatorial Theory, Series B,2001,83(2) : 201-212.
  • 6Fabrici I, Madaras T. The structure o f 1-planar graphs[J]. Discrete Mathematics,2007,307(7-8) :854-865.
  • 7Zhang X, Liu G Z. On edge colorings of 1-planar graphs without adjacent triangles[J]. Information Processing Letters, 2012,112 : 138-142.
  • 8张欣,刘桂真,吴建良.不含3-圈的1-平面图的边染色[J].山东大学学报(理学版),2010,45(6):15-17. 被引量:8
  • 9Zhang X, Wu J L. On edge colorings of 1-planar graphs[J]. Information Processing Letters, 2011,111(3)..124-128.
  • 10Vizing V G. Some unsolved problems in graph theory[J]. Uspekhi MatNauk, 1968,23 (6) : 117-134.

二级参考文献17

  • 1BONDY J A, MURTY U S R. Graph theory with applications [M]. New York: North-Holland, 1976.
  • 2BORODIN O V. Solution of Ringel' s problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs, Diskret. Analiz [J]. 1984, 41:12-26.
  • 3BORODIN O V, KOSTOCHKA A V, RASPAUD A, et al. Acyclic colouring of 1-planar graphsE J]. Discrete Applied Mathematics, 2001, 114:29-41.
  • 4FABRICI I, MADARAS T. The structure of 1-planar graphs [J]. Discrete Mathematics, 2007, 307:854-865.
  • 5SANDERS D P, ZHAO Yue. Planar graphs of maximum degree seven are class I [ J ]. Journal of Combinatorial Theory: Series B, 2002, 83(2):348-360.
  • 6YAP H P. Some topics in graph theory [M]. New York: Cambridge University Press, 1986.
  • 7SANDERS D P, ZHAO Yue. On the size of edge chromatic critical graphs [ J ]. Journal of Combinatorial Theory : Series B, 2002, 86:408-412.
  • 8Bondy J A, Murty U S R. (3raph Theory with Applications. New York: North-Holland, 1976.
  • 9Ringel G. Ein sechsfarbenproblem auf der Kugel. Abh Math Sem Univ Hamburg, 1965, 29:107-117.
  • 10Borodin O V. Solution of Ringel's problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs (in Russian). Diskret Anal, 1984, 41:12-26.

共引文献13

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部