期刊文献+

质子海绵量子点-siRNA靶向Notch1蛋白治疗白血病的研究 被引量:1

Therapeutic effects of proton-sponge-coated QD-siRNA targeting Notch1 protein on leukemia
原文传递
导出
摘要 目的研究质子海绵量子点-siRNA靶向急性T淋巴细胞白血病细胞系过度表达的Notch1蛋白的治疗效果。方法以Notch1过度表达的急性淋巴细胞白血病细胞系为研究背景,合成靶向Notch1基因的质子海绵包封的量子点(quantum dots,QD)-siRNA复合物转染白血病细胞,与传统转染试剂Lipofectamine2000、TransIT和JetPEI相比较,用免疫印迹方法、RT-PCR方法检测转染效率,用CCK8分析法检测细胞毒作用。结果与其它转染试剂比较,质子海绵包封的QD-siRNA在基因沉默效应上取得了4~10倍的提高,同时mRNA的表达明显减少(P<0.01),其细胞毒性下降到其它转染试剂的47.6%~66.7%,存活细胞数量上升了1.5~2.1倍。结论质子海绵QD-siRNA应用到Notch1急性T淋巴细胞白血病细胞系中,与传统转染试剂比较,可提高基因沉默效应并降低细胞毒作用。 We aimed to research the therapeutic effect of short-interfering RNA (siRNA) of proton-spongecoated quantum dots (QD) to Notchl protein over expression in T cell acute lymphocyte leukemia (T-ALL) cell line. Firstly, proton-sponge-coated QD-siRNA targeting Notchl protein was constructed and transfected into T- ALL cell line, while transfection reagent such as Lipofectamine 2000, TransiT and JetPEI were set as controls. Immunoblotting and RT-PCR indicated that the gene silencing efficiency of proton-sponge-coated QD-siRNA increased by 4-10 folds, and proton-sponge-coated QD-siRNA also decreased the content of Notchl mRNA significantly (P 〈 0.01), as compared with controls. CCK8 assay showed that proton-sponge-coated QD-siRNA decreased the cellular toxicity to 47.6%-66.7% compared with other reagent but increased the survival rate of T-ALL cell line by 1.5-2.1 folds, compared with other transfection reagent. Above data represents improvement in gene silencing efficiency and reduction in cellular toxicity when proton-sponge-coated QD-siRNA is applied to therapy of T-ALL.
出处 《免疫学杂志》 CAS CSCD 北大核心 2013年第6期474-479,共6页 Immunological Journal
基金 国家自然科学基金青年基金项目(81100350) 吉林大学基本科研业务费(450060445226) 第49批中国博士后科学基金面上资助一等资助金(20110490155) 吉林大学白求恩B计划资助基金(450060481921)
关键词 质子海绵 量子点 急性T细胞淋巴细胞白血病 小分子干扰核糖核酸 分子靶向治疗 Proton-sponge Quantum dots T cell acute lymphocyte leukemia Short interference RNA Molecular target treatment
  • 相关文献

参考文献10

  • 1Weng AR Ferrando AA, Lee W, et al. Activating mutations of Notch l in human T cell acute lymphoblastic leukemia[J]. Science, 2004, 306(5694): 269-271.
  • 2Navarro J, Oudrhiri N, Fabrega S. et al. Gene delivery systems: bridging the gap between recombinant viruses andartificial vectors[J]. Adv Drug Deliv Rev, 1998, 30(1/3): 5-11.
  • 3田丽华,李雪,刁玉梅,李兵.IL-10基因修饰的大鼠树突状细胞表型分析及生物学特性的研究[J].免疫学杂志,2012,28(3):227-230. 被引量:4
  • 4张宏斌,周霞,武婕,赵华福,冼江,王捷.重组质粒pEGFP-ING4的构建及其对MCF-7细胞凋亡的影响[J].免疫学杂志,2012,28(1):15-18. 被引量:1
  • 5Michalet X, Pinaud F, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709): 538-544.
  • 6Zhao Y, Zhao L, Zhou L, et al. Quantum dot conjugates for targeted silencing of bcr/abl gene by RNA interference in human myelogenous leukemia K562 cells [J]. J Nanosci Nanotechnol, 2010, 10(8): 5137-543.
  • 7Jung J, Solanki A, Memoli KA, et al. Selective inhibition ofhuman brain tumor cells through multifunctional quantum- dot-based siRNA delivery [J]. Angew Chem Int Ed Engl, 2010, 49(1): 103-107.
  • 8Gao XH, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat Biotechnol, 2004, 22(8): 969-976.
  • 9Yezhelyev MV, Qi L, O'Regan RM, et al. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging[J]. J Am Chem Soc, 2008, 130(28): 9006-9012.
  • 10Qi L, Gao X. Quantum dot-amphipol nanocomplex for intraeellnlar delivery and real-time imaging of siRNA [J]. ACS Nano, 2008, 2(7): 1403-1410.

二级参考文献27

  • 1韩波,胡燕华.CTLA4Ig基因修饰的树突状细胞抑制角膜移植排斥反应的机制研究[J].眼科研究,2007,25(5):347-350. 被引量:7
  • 2Garkavtsev I, Kazarov A, Gudkov A, et al. Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation [J]. Nat Genet, 1996, 14 (4): 415-420.
  • 3Shiseki M, Nagashima M, Pedeux RM, et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity [J]. Cancer Res, 2003, 63 (10): 2373-2378.
  • 4Garkavtsev I, Kozin SV, Chernova O, et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis [J]. Nature, 2004, 428 (6980): 328-332.
  • 5Ozer A, Wu LC, Bruick RK. The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF) [J]. Proc Natl Acad Sci USA, 2005, 102 (21): 7481-7486.
  • 6Gunduz M, Nagatsuka H, Demircan K, et al. Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas[J]. Gene, 2005, 356:109-117.
  • 7Coles AH, Jones SN. The ING gene family in the regulation of cell growth and tumorigenesis[J]. J Cell Physiol, 2009, 218 (1): 45-57.
  • 8He GH, Helbing CC, Wagner M J, et ak Phylogenetic analysis of the ING family of PHD finger proteins[J]. Mol Biol Evol, 2005, 22 (1): 104-116.
  • 9Bienz M. The PHD finger, a nuclear protein-interaction domain [J]. Trends Biochem Sci, 2006, 31 (1): 35--40.
  • 10Shen JC, Unoki M, Ythier D, et al. Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, Liprin a 1 [J]. Cancer Res, 2007, 67 (6): 2552-2558.

共引文献3

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部