期刊文献+

一种融合反向学习和量子优化的粒子群算法 被引量:6

Particle Swarm Optimization Based on Opposition-based Learning and Quantum Optimization
下载PDF
导出
摘要 为了克服标准粒子群算法容易陷入局部最优的缺点,结合量子优化和反向学习的思想,提出一种混合反向学习和量子优化的粒子群算法.该混合算法在种群初始化、种群的跳越和种群最优个体的局部改进三方面上提高了量子粒子群算法的性能,有效地避免粒子群陷入局部最优并加速种群收敛.数值实验表明,混合算法在不同的函数优化方面具有较高的性能. In order to overcome the drawback of standard particle swarm algorithm which is easy to fall into local optimum, an improved particle swarm optimization algorithm is proposed combined with quantum optimization and opposition-based learning. There are three aspects that improve the quantum particle swarm algorithm performance: the initialization of population, population jumps and the best individual in the population of the local improvement. The improved algorithm can effectively avoid particle swarm into local optimum and accelerated population to the optimal position of the convergence. The numerical experiments show that the hybrid algorithm has high performance in different function optimization
作者 肖文显 刘震
出处 《微电子学与计算机》 CSCD 北大核心 2013年第6期126-130,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(70701013) 河南省教育厅2007年自然科学研究计划(2007520068)
关键词 粒子群优化 量子优化 反向学习 函数优化 particle swarm optimizatiom quantum optimization opposition-based learning function optimization
  • 相关文献

参考文献6

  • 1Kennedy J, Eberhart R C. Particles swarm optimiza-tion[C]//IEEE Int Conf Neural Networks Washing-ton, DC,USA:IEEE, 1995 :1942-1957.
  • 2Sun J Feng B,Xu W B. Particle swarm optimizationwith particles having quantum behavior [J]. IEEEConference on Evolutionary Computation, 2004 ( 1).:325-331.
  • 3Tizhoosh H R. Opposition-based learning: a newscheme for machine intelligence [C]//Int Conf onComputational Intelligence for Modeling Control andAutomation-CIMCA 2005. Vienna,Austria: IEEE,2005:695-701.
  • 4吴昱,李元香,徐星.基于群智能的新型反向混合差分进化算法[J].小型微型计算机系统,2009,30(5):903-907. 被引量:11
  • 5Han L, He X. A novel opposition-based particle swarmoptimization for noisy problems [C]//Proceedings ofthe Third International Conference on Natural Compu-tatioa [s. 1.] :IEEE Press, 2007 : 624-629.
  • 6王燕,贺兴时,王凡,刘达卓.改进反向粒子群算法及其在噪声中的应用[J].西安工程大学学报,2011,25(5):721-725. 被引量:5

二级参考文献24

  • 1Storn R,Price K.Differential evolution--a simple efficient adaptive scheme for global optimization over continuous spaces[R].California:International Computer Science Institute,Berkeley,1995.
  • 2Storn R,Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Global Optimization,1997,11(4):341-359.
  • 3Kennedy J,Eberhart R.Particle swarm optimization[C].Proceeding of IEEE International Conference on Neural Network,1995,1942-1948.
  • 4Hendtlass T.A combined swarm differential evolution algorithm for optimization problems[M].Springer-Verlag Berlin Heidelberg,2001,11-18.
  • 5Zhang W J,Xie X F,et al.DEPSO:hybrid particle swarm with differential evolution operator[C].Proceeding of IEEE International Conference on Systems,Man and Cybernetics,2003,3816-3821.
  • 6TaIbi H,Batouche M.Hybrid particle swam with differential evolution for multimodal image registration[C].Proceeding of International Conference on Industrial Technology,2004,1567-1572.
  • 7Das S,Konar A,et al.Improving particle swarm optimization with differentially perturbed velocity[C].Proceeding of Genetic and Evolutionary Computation Conference,2005,177-184.
  • 8Hao Z F,Guo G H,Huang H,et al.A particle swarm optimization algorithm with differential evolution[C].Proceeding of the Sixth International Conference on Machine Learning and Cybernetics,2007,1031-1035.
  • 9Omran M G H,Engelbrecht A P,Salman A,et al.Differential evolution based particle swarm optimization[C].Proceeding of IEEE Swarm Intelligence Symposium,2007.
  • 10Das S,Konar A,Chakraborty U K.Two improved differential evolution schemes for faster global search[C].Proceeding of Genetic and Evolutionary Computation Conference,2005,991-998.

共引文献14

同被引文献40

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部