期刊文献+

Zr/Ti 摩尔比对锶锆钛复合氧化物在可见光下光催化性能的影响 被引量:7

Effect of Designed Zr/Ti Molar Ratio on the Photocatalytic Activity of Sr-Zr-Ti Mixed Oxide Catalysts under Visible Light
下载PDF
导出
摘要 通过分步沉积法制备了不同Zr/Ti摩尔比的锶锆钛(SZT)复合氧化物催化剂, 以X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见(UV-Vis)漫反射光谱等表征手段考察不同Zr/Ti摩尔比下SZT催化剂的结构形态, 以可见光下光催化降解亚甲基蓝为模型反应考察样品的光催化活性. 结果表明: Zr/Ti摩尔比<1时SZT 催化剂发生 Zr4+与Ti4+同质替换, 引起晶格缺陷, 光催化活性小幅提高; Zr/Ti摩尔比≥1时SZT催化剂产生SrZrO3/TinO2n-1(n=4, 9)的新晶相, TinO2n-1(n=4, 9)的存在有利于光生电子-空穴的传导与分离, 可大幅提高催化剂光催化活性. 其中, SZT-5/5表现出最高的光催化活性, 其一级反应速率常数达到0.2133 min-1, 是同等光照条件下纯SrTiO3样品(0.0158 min-1)的 13.5 倍. A series of Sr-Zr-Ti (SZT) mixed oxide catalysts were prepared by a fractional-precipitation method. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and ultraviolet visible (UV-Vis) diffuse reflectance absorption spectra. Photocatalytic degradation of methylene blue was investigated to determine the photoactivity of the catalyst. It was shown that with a Zr/Ti ratio〈l, the SZT mixed oxide catalysts showed improved photocatalytic activity. This was attributed to lattice defects creating active photocatalytic sites because of Zr4+ doping. For Zr/Ti ratios〉l, the catalysts showed markedly improved photocatalytJc activity because of new crystalline phases of SrZrO3 and TinO2n-1 (n=4, 9) that facilitated splitting and conduction for electron/hole. Typical SZT samples (Zr/Ti=4) showed the highest photocatalytic activity, with first-order reaction rate constant 13.5 times that of a SrTiO~ sample.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第6期1319-1326,共8页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21107096)资助项目~~
关键词 可见光 锶锆钛复合氧化物 ZR Ti摩尔比 光催化降解 亚甲基蓝 Visible light Sr-Zr-Ti mixed oxide Zr/Ti molar ratio Photocatalytic degradation Methylene blue
  • 相关文献

参考文献33

  • 1Yan, X. R.; Li, X. H.; Huo, M. L.; Guo, W. W.; Gong, Y. J. Acta Phys. -Chim. Sin. 2001, 17, 23.
  • 2Kurokawa, H.; Yang, L. M.; Jacobson, C. E; Jacobson, C. E; De Jonghe, L. C.; Visco, S. J. Power Sources 2007, 164 (2), 510. doi: 10.1016/j.jpowsour.2006.11.048.
  • 3Huang, H. F.; Tang, W.; Chen, Y. F.; Chen, B. E J. Mol. Catal.2005,19(5),351.
  • 4Lee, M. S.; Meyer, J. U. Sensors andAetuators B, Chemical 2000, 68 (1-3 ), 293. doi: 10.1016/S0925-4005(00)00447-0.
  • 5Luo, W. J.; Li, Z. S.; Jiang, X. J.; Yu, T.; Liu, L. E; Chen, X. Y.; Ye, J. H.; Zou, Z. G. Phys. Chem. Chem. Phys. 2008, 10, 6717. doi: 10.1039/bS03996h.
  • 6Puangpetch, T.; Sreethawong, T.; Chavadej, S. Int. J. Hydrog. Energy 2010, 35, 6532.
  • 7Wang, D.; Kako, T.; Ye, J. J. Phys. Chem. C 2009, 113, 3785. doi: 10.1021/jp807393a.
  • 8Chen, U; Zhang, S. C.; Wang, L. Q.; Xue, D. F.; Yin, S. J. Crystal Growth 2009, 311,746.
  • 9Ryoko, K.; Tatsuya, I.; Hideki, K.; Akihiko, K. J. Phys. Chem. B 2004, 108, 8992. doi: lO.1021/jpO49556p.
  • 10Onishi, T. J. Top Catal. 2010, 53, 566. doi: 10.1007/ s11244-010-9488-6.

同被引文献597

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部