期刊文献+

基于多运动特征的森林火灾烟雾图像识别算法 被引量:6

A smoke detection algorithm based on multiple motion features.
下载PDF
导出
摘要 为甄别林火烟雾与大气云雾,提出了基于多种运动特征判据的视频烟雾图像检测算法。首先利用烟雾自身的光学动态特征———光流方向性、相关性、扩散性,分别对连续帧包含烟云的可疑区域进行图像特征标志判别;再经数据融合算法有效区分林火烟雾与大气云雾,克服了依靠单一图像特征检测烟雾的不足。结果表明,光流方向性、相关性、扩散性判别相结合的识别算法能提高森林火灾视频图像的有效识别率。 A smoke detection algorithm combined of multiple motion features was presented. The main purpose of this paper was to separate the smoke-resembling natural phenomena such as clouds, cloud shadows and dust from real smoke. The optical flow property, correlation property based on discrete wavelet transform and diffusion property were matched together to make discrimination. At last, a data weighted fusion algorithm based on statistics theory was applied into smoke detection. Experimental results showed that, compared with the algorithm of detecting smoke using single property, the proposed method can improve the accuracy of smoke detection.
出处 《北京林业大学学报》 CAS CSCD 北大核心 2013年第3期154-158,共5页 Journal of Beijing Forestry University
基金 国家林业局重点科研项目(2010-01)
关键词 林火烟雾 大气云雾 光流运动 离散小波变换 数据融合算法 forest fire smoke cloud and mist optical flow discrete wavelet transform data fusionalgorithm based on statistic
  • 相关文献

参考文献8

二级参考文献77

共引文献104

同被引文献57

  • 1JIANG LiLi 1,QI QingWen 1,ZHANG An 1,GUO ChaoHui 2 & CHENG Xi 1,3 1 Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China,2 China Center for Resources Satellite Data and Applications,Beijing 100094,China,3Graduate University of Chinese Academy of Sciences,Beijing 100049,China.Improving the accuracy of image-based forest fire recognition and spatial positioning[J].Science China(Technological Sciences),2010,53(S1):184-190. 被引量:10
  • 2任厚平,张永明,张维农,袁非牛,余春雨.基于混合高斯模型定位的火灾烟雾纹理特征提取[J].微计算机信息,2005,21(11S):83-85. 被引量:7
  • 3舒立福,田晓瑞.国外森林防火工作现状及展望[J].世界林业研究,1997,10(2):28-36. 被引量:70
  • 4Fang Lu-ming,Xu Aiqun, Tang Li-hua. Study of the key tech- nology of forest fire prevention based on a cooperation of video monitor and GIS[J]. Natural Computation,2008,5 : 391 396.
  • 5Huang Fu-zhen, Wu Hai-tao. Video flame detection based on color and contour features[C]//Proceeding of the 31st Chi-nese Control Conference(CCC). Hefei, China, 2012 : 3668-3671.
  • 6Chen Juan, He Yaping, Wang Jian. Multi-feature fusion based fast video flame detection[J]. Building and Environment, 2010, 45(5):1113-1122.
  • 7Toreyin B U,Dedeoglu Y, Cetin A E. Flame detection in video using hidden markov models [C]//Proc of IEEE International Conference on Image Processing. 1EEE Press, 2005, 2: 1230- 1233.
  • 8Habiboglu Y, Gunay O, Cetin A E. Flame detection method in video using covariance deseriptors[C]//2011 IEEE International Conference on Acoustics Speech and Signal Processing (IC ASSP). 2011 : 1817-1820.
  • 9Li Ma, Wu Kai-hua, Zhu L. Fire smoke detection in video images using Kalman filter and Gaussian mixture color model[C]// IEEE Conputer Press Artificial Intelligence and Computational Intelligence. Las Vegas, USA, 2010 : 484-487.
  • 10Ko B C,Kwak J, Nam J. Wildfire smoke detection using tempo- ral spatial features and random forest classifiers[J]. Optical En gineering,2012,51 (1) : 1-10.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部