期刊文献+

基于径向基神经网络的舰艇磁场推算模型 被引量:4

Model of Ship's Magnetic Field Extrapolation Based on Radial Basis Function Neural Network
下载PDF
导出
摘要 针对目前数值建模解决舰艇内外磁场推算问题时存在的困难,从智能优化的角度出发,建立了内外磁场之间的径向基神经网络预报模型。该方法避免了利用数值建模存在的诸多困难,即可实现舰艇内外磁场有效推算,并利用船模实验验证了网络预测的准确性,其换算精度相较于数值建模有所提高,满足工程实际需求。 The magnetic anomaly created by ferromagnetic ships may endanger their invisibility. Nowadays, a new technique called closed-loop degaussing system can reduce the magnetic anomaly especialIy permanent one in real-time. To achieve it, a model able to predict off-board magnetic field from onboard measurements is required. Many researchers settle the problem by some numerical models. In this paper, a Radial Basis Function(RBF)neural network is proposed to solve it. The method can avoid many problems from linear model. Its high accuracy and good generalization ability have been tested by a mockup experiment.
机构地区 [
出处 《舰船电子工程》 2013年第5期161-162,171,共3页 Ship Electronic Engineering
基金 国家海洋专项基金资助项目(420050101)资助
关键词 舰船 磁场 闭环消磁 径向基 神经网络 ship, magnetic field, closed loop degaussing, RBF, neural network
  • 相关文献

参考文献6

二级参考文献62

共引文献86

同被引文献26

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部