摘要
定义了区间粗糙数的欧氏距离和期望值。针对属性值为区间粗糙数且属性权重为区间数的多属性决策问题,提出一种基于理想点的决策方法。利用TOPSIS法构建了相对贴近度的非线性分式规划模型,得到了各方案相对贴近度,进而对各个方案进行排序。通过算例验证了所提方法的有效性。
Euclidean distance and the expected value of interval rough numbers are defined. A decision making method is proposed based on fractional programming for the problem of multiple attribute decision making, in which the attribute values are the interval rough numbers and the weights of attributes are intervals. By using the TOPSIS, the models of non-linear fractional programming for alter- ative' s relative closeness are built. The alternative' s relative closeness is obtained for ranking all alteratives. Finally, a numerical example shows the effectiveness of the proposed method.
出处
《重庆理工大学学报(自然科学)》
CAS
2013年第5期113-117,共5页
Journal of Chongqing University of Technology:Natural Science
基金
国家自然科学基金资助项目(70861001)
广西自然科学基金资助项目(桂科自0991027)
关键词
多属性决策
区间粗糙数
理想点
multiple attribute decision making
interval rough numbers
ideal point