期刊文献+

一类二阶奇异边值问题单调递减正解的存在性

On the Existence of Strictly Decreasing Positive Solutions for Second-Order Singular Boundary Value Problems
下载PDF
导出
摘要 研究一类二阶奇异常微分方程在有界区间[0,T]以及正半轴[0,+∞)上的单调递减正解的存在性.应用打靶法并结合已有的相关结论来更好地分析奇异微分方程解的性质,并得到单调递减正解存在的一系列充分条件.考虑奇异常微分方程的非线性项不一定满足有界性和可微性的情形,并且不需要非线性项在无穷远处满足任何增长条件,从而在一定程度上改进并推广了已有结果. The study considers the existence of strictly decreasing positive solutions for a class of second-order singular differential equation in bounded intervals and in half-line [0,+∞).Sufficient conditions of the existence of such solutions are obtained by applying a shooting argument combined with some recent results in the literature to better analyse the properties of certain solutions associated with the singular differential equation.The above problems are dealt with when the nonlinear part of the singular differential equation is not necessarily bounded,differentiable and does not satisfy any kind of growth condition at infinity,and thus the recent results in the literature are generalized and significantly improved.
作者 蔡白光 陈丽
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2013年第3期241-245,252,共6页 Journal of Henan University:Natural Science
基金 国家自然科学基金资助项目(11161017) 海南省自然科学基金资助项目(110002)
关键词 多二阶奇异边值问题 无界区域 正解 径向解 变分方法 econd-order singular boundary value problem unbounded domain positive solution radial solution variational methods
  • 相关文献

参考文献11

  • 1Pohozaev S I. Eigen{unctions of the equations Au + Af(u) = 0 [J]. Soy Math Dokl, 1965(5):1408-1411.
  • 2Berestycki H, Lions P L. Nonlinear scalar field equations, I: existence of a ground state[-J]. Arch Rat Mech Anal, 1983, 82313-345.
  • 3Conti M, Merizzi L, Terracini S. Radial solutions of superlinear equations inRN, Part I: a global variational approach [J]. Arch Rat Mech Anal, 2000,153:291-316.
  • 4Berestycki H, Lions P L, Peletier L A. An ODE approach to the existence of positive solutions for semilinear problems in Rn [J]. IndianaUnivMathJ, 1981,30(1) :141-157.
  • 5Bonheure D, Gomes J M, Sanchez L, Positive solutions of a second-order singular ordinary differential equation[J]. Non- linear Anal, 2005,61 : 1383-1399.
  • 6Orpel A. On the existence of bounded positive solutions for a class of singular BVPs [J]. Nonlinear Anal. , 2008,69:1389 -1395.
  • 7Rachunkovfi I, Tomecek J. Bubble-type solutions of nonlinear singular problems[J]. Math. Comput. Model. , 2010,51: 658-669.
  • 8Mawhin J, Willem M. Critical Point Theorey and Hamihonian Systems [M]. New York: Springer, 1989.
  • 9Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. American Mathematical Society: CBMS, 1986.
  • 10hydorek M, Janczewska J. Homoclinic solutions for a class of second order Hamihonian systems[J]. J. Differential E- quations, 2005,219(2) :375-389.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部