期刊文献+

基于自然计算的压缩感知图像重构

Compressive Sensing Image Reconstruction Based on Natural Computation
下载PDF
导出
摘要 由于进化算法的初始种群都是随机初始的,这样使得问题找到最优解会花费很多的时间,如果能在初始种群时使用某种先验或用其他方法进行初始,将会使得问题以很快的速度接近全局最优解,而且重构结果会更逼近真实解。论文将从对初始种群的研究中着手,提出我们的算法并显示实验的可行性以及优越性。 As the evolution algorithms possess randomness,it will bring about that it need much time to fine the optimal solution.If it can use some prior or other ways to initial the initial population,there will be close to the global optimal solution quickly,and the reconstruction results are close to real solution.This paper will set about the initial population,put forward our algorithm and display the experiment to show the feasibility and the superiority.
作者 徐静
出处 《计算机与数字工程》 2013年第5期816-819,828,共5页 Computer & Digital Engineering
关键词 进化算法 图像重构 压缩感知 初始种群 evolution algorithms image reconstruction compressive sensing initial population
  • 相关文献

参考文献12

  • 1D Takhar, J Laska, M Wakin, et al. A new compressive imaging camera architecture using optical-domain compression [C]//Proceedings of SPIE. Bellingham WA: International Society for Optical Engineering, 2006,6065.
  • 2M. S. Crouse, R. D. Nowak, R. G. Baraniuk. Wavelet- based statistical signal processing using hidden Markov model [J]. IEEE Transactions on Signal Processing, 1998,46: 886- 902.
  • 3Sheikh M, Sarvotham S, Milenkovic O, et al. DNA array decoding from nonlinear measurements by belief propagation [C]//Proceedings of the 14th Workshop on Statistical Signal Processing. Washington D. C., USA: IEEE,2007:215-219.
  • 4E. Candes,J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Inform. Theory,2006,56 (2):489-509.
  • 5Yaakov Tsaig, David L. Donoho. Extensions of compressed sensing[J]. Signal Process,2005,86549-571.
  • 6David L. Donoho. Compressed sensing[J]. IEEE Trans. inform. Theory, 2006, (4) : 1289-1306.
  • 7Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996,381 (6583): 607-609.
  • 8孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究[J].自动化学报,2008,34(11):1379-1387. 被引量:43
  • 9Candes E, Donoho D L. Curvelets-a surprisingly effective nonadaptive representation for objects with edges, Technical Report, Department of Statistics, Stanford University,USA, 1999.
  • 10S Bhattacharya, T Blumensath, B Mulgrew, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing[C]//IEEE Workshop on Statistical Signal Processing. Madison, Wisconsin,2007:448-452.

二级参考文献35

  • 1Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 2Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 3Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 4Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 5Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 7Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 8Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598
  • 9Mancera L, Portilla J. Lo-norm-based sparse representation through alternate projections. In: Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE, 2006. 2089-2092
  • 10Bergeau F, Malt S. Match pursuit of images. In: Proceedings of the 1995 International Conference on Image Processing. Washington D. C., USA: IEEE, 1995. 53

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部