期刊文献+

太阳能腔式吸热器光热转换特性及其在油田上的应用 被引量:3

Optical-thermal exchange characteristics of solar receiver and its application in oilfields
下载PDF
导出
摘要 以油田规模化利用太阳能为背景,建立基于蒙特卡洛射线踪迹法的腔式吸热器光热转换物理模型和数学模型,通过数值模拟计算腔式吸热器的热流密度分布特性,设计一种新型太阳能腔式吸热器,结合油田应用对太阳能腔式吸热器出口水温进行计算.结果表明,新型太阳能腔式吸热器的热流密度分布基本呈正态分布,在太阳辐射强度为1 100W/m2,最大辐射热流为0.22MW/m2时,系统实际聚光比为200,吸热器出口水温为50.2℃,能够满足油田应用需求. Utilizing solar energy in oilfield has a strong industrial background and industry needs,and performance of the solar cavity/receiver is the key factor of using solar in the form of big-scale and low-cost.This paper aims to design a new-type solar cavity/receiver and simulate the heat flux inside the solar receiver based on Monte-Carlo ray-tracing method,then calculate fluid temperature in the outlet of the receiver.The computer code for Monte-Carlo ray-tracing method was written in FORTRAN language in-house.The results show that fluid temperature in the outlet is 50.2 ℃,which can meet the engineering application.The results also show that the highest radiation flux is 0.22 MW/m2 when the incident solar irradiation value is 1 100 W/m2,and the concentration ratio of the system is 200.This can serve as a reference for the future utilizing solar energy in oilfields.
出处 《东北石油大学学报》 CAS 北大核心 2013年第2期112-117,11-12,共6页 Journal of Northeast Petroleum University
基金 国家"973"计划项目(2009CB220006) 国家自然科学基金重点项目(50930007) 黑龙江省教育厅科学技术研究项目(12531068)
关键词 太阳能腔式吸热器 油田 蒙特卡洛射线踪迹法 热流密度 solar cavity/receiver oilfield monte-carlo ray-tracing method radiation flux
  • 相关文献

参考文献19

  • 1王宝辉,苑丹丹,吴红军,隋欣.太阳能驱动高温熔融碳酸盐电解电势的理论分析[J].大庆石油学院学报,2010,34(5):92-95. 被引量:3
  • 2汪全林,柴世超,程自力,程明佳,任会玲.基于两相流低渗油藏合理注采井距确定方法[J].东北石油大学学报,2012,36(4):45-48. 被引量:12
  • 3Henden I., Rekstad J, Meir M. Thermal performance of combined solar systems with different collector efficiencies [J].Solar Energy, 2002,27(4):299-305.
  • 4Janjai S, Pankaew P, Laksanaboonsong J. A model for calculating hourly global solar radiation from satellite data in the tropics [J]. Applied Energy, 2009,86(9) :1450-1457.
  • 5Yao Z H, Wang Z F, Lu Z W, et al. Modeling and simulation of the pioneer 1 MW solar thermal central receiver system in China [J]. Renewable Energy, 2009,34(11) :2437-2446.
  • 6David B, Ruxandra V, Pieter S. Innovation in concentrated solar power [J]. Solar energy material and solar cells, 2011,95(10):2703-2725.
  • 7Su Y, Chan L C, Shu L J, et al. Real time prediction models for output power and efficiency of grid-connected solar photovoltaic system [J]. Applied Energy, 2012, 93:319-326.
  • 8Panwar N L, Kaushik S C, Kothari S. Experimental investigation of energy and exergy efficiencies of domestic size parabolic dish solar cooker [J]. Renewable Sustainable Energy, 2012,4: 023111.
  • 9Reddy K S, Veershetty G. Viability analysis of solar parabolic dish stand-alone power plant [J]. Applied Energy, 2013,102:908-922.
  • 10刘志刚,张春平,赵耀华,唐大伟.一种新型腔式吸热器的设计与实验研究[J].太阳能学报,2005,26(3):332-337. 被引量:25

二级参考文献82

共引文献123

同被引文献37

  • 1曹华,杨丽莉.太阳能与光伏发电产业的研究[J].湖北农业科学,2021,60(S02):243-246. 被引量:4
  • 2李明,夏朝凤.槽式聚光集热系统加热真空管的特性及应用研究[J].太阳能学报,2006,27(1):90-95. 被引量:22
  • 3N. Nallusamy, S. Sampath, R. Velraj. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources [ J ]. Renewable Ener- gy ,2007,32 : 1206 - 1227.
  • 4Qianjun Mao,Ming Xie, Yong Shuai et al.. Distribution of radiation flux in focal plane for a parabolic dish solar system [ J ].Journal of Harbin Institute of Technology (New Series) ,2012,19(2) :99 - 102.
  • 5Liang Zhanga, Zitao Yua, Liwu Far, a, b, elt. An experimental in- vestigation of the heat losses of a U - type solar heat pipe receiver of a parabolic trough collector - based natural circulation steam generation system[J]. Renewable Energy,2013,57:262 -268.
  • 6V Dudley, G Kolb, M Sloan, et al. SEGS LS2 Solar Collector- Test Results. Report of Sandia National Laboratories, SANDIA94 -1884, USA, 1994.
  • 7Wendelin T. SolTRACE a new optical modeling tool for concen- trating solar optics. American Society of Mechanical Engineers. Proceedings of the ISEC 2003 : International Solar Energy Confer- ence, US: New York 2003:253-260.
  • 8TAUMOEFOLAU T, PAITOONSURIKARN S, HUGHES G, etal. Experimental investigation of natural convection heat lossfrom a model solar concentrator cavity receiver [ J ]. Journal ofsolar energy engineering, 2004, 126(2) : 801-807.
  • 9REYNOLDS D J, JANCE M J, BEHNIA M, et al. An experimentaland computational study of the heat loss characteristics of a trapezoidalcavity absorber[J]. Solar energy, 2004, 76(1-3) : 229-234.
  • 10MUFTUOGLU A, BILGEN E. Heat transfer in inclined rectangularreceivers for concentrated solar radiation [J]. Internationalcommunications in heat and mass transfer, 2008 , 35 ( 5 ): 551556.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部