期刊文献+

异结构混沌同步系统图像加密方法的研究 被引量:2

Study on Digital Image Encryption Method Based on Different Structure Chaos Synchronization System
下载PDF
导出
摘要 由于混沌动力学系统具有伪随机性、确定性和对初始条件与系统参数的极端敏感特性,故将其与数字图像加密技术相结合,可构造出非常好的图像信息加密系统。提出基于驱动响应法实现图像加密和解密,经过仿真实验表明加密后原始图像无法从加密后的图像中提取原始信息,然而经过解密后的图像能达到与原始图像一致的效果。为了实现两异结构混沌系统在有限时间内同步数据安全通讯,分别改变线性映射关系参数和控制律参数对图像解密密钥敏感性进行分析,实验结果为图像与明文有很大差别。因此,证明了异结构混沌同步系统图像加密方法具有良好的安全性。 By the use of combining digital image encryption with chaotic dynamical system which has stochastic. certainty and sensitivity to initial value of chaos conditions and parameters, we can get an extremely good pictorial information cryptographie system. A new digital image encryption method based on different structure chaos syn chronization system was putted forward in this paper for encrypting and decrypting all of your images on the base of the driveresponse method (DRM). The simulative test results show that the encrypted images information cannot be abstracted or restored true faces of the original images, however, the decrypted image can achieve the same effect as the original image by the right password. In order to realize security of data in communication systems be tween two different chaotic systems within a limited time, the image decryption key sensitivity was analyzed by changing the linear mapping parameters and the control law parameters separately, the original images and plain texts are very different in the experimental results. Hence, it was proved that the new encryption method above has a very good safety.
出处 《机械科学与技术》 CSCD 北大核心 2013年第6期899-903,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 浙江省教育厅科技计划项目(Y201225614)资助
关键词 驱动响应法 异结构混沌系统 混沌矩阵可逆 数据安全 sensitivityanalysis security of data drive response method different structure chaotic systems chaos matrix reversible data security
  • 相关文献

参考文献3

二级参考文献21

  • 1[1]Pecora L M,Carroll T L.Synchronization of chaotic systems.Physical Review Letters,1990,64 (8):821 ~ 830
  • 2[2]Carroll T L,Pecora L M.Synchronizing chaotic circuits.IEEE Transactions on Circuits and Systems,1991,38(4):453 ~456
  • 3[3]Chen G,Dong X.On feedback control of chaotic continuoustime systems.IEEE Transactions on Circuits and Systems,1993,40(9):591 ~601
  • 4[4]Fuh CC,Tung PC.Controlling chaos using differential geometric method.Physical Review Letters,1995,75(16):2952~ 2955
  • 5[5]Chen G,Dong X.From chaos to order:methodologies,perspectives and applications.Singapore:World Scientific,1998,12 ~27
  • 6[8]Shinbrot T,Grebogi C,Ott E,et al.Using small perturbations to control chaos.Nature,1993,363 (6):411 ~ 417
  • 7[9]Michael G R,Arkady S P,Jurgen K.From phase to lag synchronization in coupled chaotic oscillators.Physical Review Letters,1997,78(22):4193 ~4196
  • 8[10]Yu X,Song Y.Chaos synchronization via controlling partial state of chaotic systems.International Journal of Bifurcation and Chaos,2001,11 (6):1737 ~ 1741
  • 9[11]Yang X S.On the existence of generalized synchronizor in unidirectionally coupled systems.Applied Mathematics and Computation,2001,122(1):71 ~ 79
  • 10[12]Ho M C,Hung Y C,Chou C H.Phase and anti-phase synchronization of two chaotic systems by using active control.Phys.Lett.A,2002,296(1):43 ~48

共引文献18

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部