期刊文献+

一种多源多光谱遥感图像特征点匹配技术 被引量:1

A Multi-source Remote Image Feature Extraction and Matching Technology
原文传递
导出
摘要 在多源多光谱遥感图像中,针对匹配图像的像素之间非线性变化而导致正确匹配点对下降的情况,提出了一种基于主成分分析的多源多光谱遥感图像特征点提取算法。利用尺度不变特征变换(SIFT)算法的基本原理,首先对两幅多源的多光谱遥感图像进行主成分变换,再用变换后各自的第一主分量图像作为待匹配图像;其次,在构建尺度空间时提高尺度参数并且在进行特征匹配时,利用尺度限制条件进行匹配,这样既能提高匹配精度又能提高运算速度;最后,采用随机抽样一致性算法剔除误匹配点。这种算法能减少多源多光谱遥感图像之间像素灰度值的非线性变化对特征点匹配的影响,提取到一定数量的正确匹配点对。通过实验对比分析,所提算法比通用算法有更高的精度和更好的适用性。 It is difficult to extract the characteristics of matching points because the image intensity in multi-source images is non- linear with respect to pixels. A multi-source remote sensing image feature point extraction algorithm based on the principal oriented component analysis is proposed. In the proposed algorithm, a principal analysis is first made for the multi-source remote sensing images, Secondly, a scale space is built with the first principal components of the multi-source remote sensing images; and the scale parameter is increased to improve the matching accuracy as well as the operation speed of the matching of feature points. This algorithm can extract a certain number of the correct matching point pairs. Comparative analysis of experiments shows that the proposed algorithm enjoys higher precision and better stability than the general algorithms.
出处 《科技导报》 CAS CSCD 北大核心 2013年第15期69-72,共4页 Science & Technology Review
基金 国家自然科学基金项目(41001265)
关键词 图像处理 特征提取 SIFT特征 多源遥感图像 image processing feature extraction SIFT feature multi-spectral remote image
  • 相关文献

参考文献23

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004,60(2): 91-110.
  • 2Ke Y R. Sukthankar R. PCA-SIFT: A more distinctive representation forlocal image descriptors [C]//Proceedings of 2004 IEEE Computer SocietyConference on Computer Vision and Pattern Recognition, WashtingtonDC, USA, June 27-July 2,2004.
  • 3Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10): 1615-1630.
  • 4Bay H, Ess A,Tuytelaars T, et al. SURF: Speeded up robust features [J].Computer Vision and Image Understanding, 2008,110(3): 346-359.
  • 5Tola E, Lepetit V, Fua P. A Fast Local Descriptor for Dense Matching[C]//Proceedings of 2008 IEEE Computer Society Conference on ComputerVision and Pattern Recognition, Anchorage, AK, June 23-28,2008.
  • 6Juan L, Gwun O. A comparison of sift, pca-sift and surf [J]. InternationalJournal of Image Processing, 2009, 3(4): 143-152.
  • 7Mikolajczyk K, Tuytelaars T. Local invariant feature detectors: A survey[J]. Foundations and Trends. in Computer Graphics and Vision, 2007,3(3): 177-280.
  • 8纪华,吴元昊,孙宏海,王延杰.结合全局信息的SIFT特征匹配算法[J].光学精密工程,2009,17(2):439-444. 被引量:70
  • 9Zhao Z S, Tian Q J, Wang J Z, et al. Image Match Using Distribution ofColorful SIFT [C]//Proceedings of 2010 International Conference onWavelet Analysis and Pattern Recognition (ICWAPR), Qingdao, China,July 11-14, 2010.
  • 10Zhou H, Yuan Y, Shi C. Object tracking using sift features and meanshift[J]. Computer Vision and Image Understanding, 2009,113(3): 345-352.

二级参考文献14

  • 1丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 2王国美,陈孝威.SIFT特征匹配算法研究[J].盐城工学院学报(自然科学版),2007,20(2):1-5. 被引量:24
  • 3David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J].International Journal of Computer Vision.2004(2)
  • 4Jan J. Koenderink.The structure of images[J].Biological Cybernetics.1984(5)
  • 5Fookes C,Maeder A.Comparison of popular nonrigid image registration techniques and a new,hybrid mutual information-based?uid algorithm[].Proc of APRS workshop on digital image computing.2003
  • 6Edoardo A,Orazio G,Marco LC,et al.Multi-modal non-rigid registration of medical images based on mutual information maxi-mization[].Proc of th international conference on image analysis and processing.2007
  • 7Orchard J.Efficient least squares multimodal registration with a globally exhaustive alignment search[].IEEE Transactions on Image Processing.2007
  • 8Pennec X,Guttmann CRG,Thirion JP.Feature-based registration of medical images:estimation and validation of the pose accuracy[].Procfirst int conf medical image computing and computer-assisted intervention.1998
  • 9Martin U,Joachim B,Hendrik D,et al.SIFT and shape context for feature-based nonlinear registration of thoracic CT images[].Proc computer vision approaches to medical image analysisnd interna-tional ECCV workshop.2006
  • 10Witkin AP.Scale-spacefiltering[].Procth int joint conf art intell.1983

共引文献77

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部