摘要
用偏序度量空间上的压缩映像不动点定理研究分数阶两点边值问题:D0-αu(t)=f(t,u(t)),0t1, u(0) =u(1) =u'(0) =u'(l) =0其中:3〈α≤4是实数;D0^a+是标准的Riemann—Liouville微分.证明了上述两点边值问题正解的存在唯一性.
We gave an existence and uniqueness for the solution of a nonlinear fractional differential equation boundary value problem D0-αu(t)=f(t,u(t)),0t1, u(0) =u(1) =u'(0) =u'(l) =0, where 3α≤4 is a real number,and D(0+)αis the standard Riemann-Liouville differentiation.Our result relies on a fixed point theorem for generalized contraction in partially ordered complete metric spaces.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2013年第3期423-426,共4页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10571021:10701020)
中央高校基本科研业务费专项基金(批准号:13CX02015A)
吉林省教育厅"十二五"科学技术研究项目(批准号:吉教科合字[2013]第505号)
关键词
分数阶微分方程
边值问题
正解
偏序度量空间
不动点定理
fractional differential equation
boundary value problem
positive solution
partially ordered metric spaces
fixed-point theorem